Widmann Andreas, Schröger Erich, Maess Burkhard
Cognitive and Biological Psychology, University of Leipzig, Germany.
Cognitive and Biological Psychology, University of Leipzig, Germany.
J Neurosci Methods. 2015 Jul 30;250:34-46. doi: 10.1016/j.jneumeth.2014.08.002. Epub 2014 Aug 13.
Filtering is a ubiquitous step in the preprocessing of electroencephalographic (EEG) and magnetoencephalographic (MEG) data. Besides the intended effect of the attenuation of signal components considered as noise, filtering can also result in various unintended adverse filter effects (distortions such as smoothing) and filter artifacts.
We give some practical guidelines for the evaluation of filter responses (impulse and frequency response) and the selection of filter types (high-pass/low-pass/band-pass/band-stop; finite/infinite impulse response, FIR/IIR) and filter parameters (cutoff frequencies, filter order and roll-off, ripple, delay and causality) to optimize signal-to-noise ratio and avoid or reduce signal distortions for selected electrophysiological applications.
Various filter implementations in common electrophysiology software packages are introduced and discussed. Resulting filter responses are compared and evaluated.
We present strategies for recognizing common adverse filter effects and filter artifacts and demonstrate them in practical examples. Best practices and recommendations for the selection and reporting of filter parameters, limitations, and alternatives to filtering are discussed.
滤波是脑电图(EEG)和脑磁图(MEG)数据预处理中普遍存在的一个步骤。除了具有将被视为噪声的信号成分衰减的预期效果外,滤波还可能导致各种非预期的不良滤波效应(如平滑等失真)和滤波伪迹。
我们给出了一些实用指南,用于评估滤波器响应(脉冲响应和频率响应)、选择滤波器类型(高通/低通/带通/带阻;有限/无限脉冲响应,FIR/IIR)以及滤波器参数(截止频率、滤波器阶数和滚降、纹波、延迟和因果性),以优化信噪比,并避免或减少所选电生理应用中的信号失真。
介绍并讨论了常见电生理软件包中的各种滤波器实现方式。对所得的滤波器响应进行了比较和评估。
我们提出了识别常见不良滤波效应和滤波伪迹的策略,并在实际示例中进行了展示。讨论了滤波器参数选择和报告的最佳实践与建议、局限性以及滤波的替代方法。