Khademi April, Venetsanopoulos Anastasios, Moody Alan R
University of Guelph , Department of Biomedical Engineering, Guelph, Ontario, N1G 2W1, Canada.
University of Toronto , Department of Electrical and Computer Engineering, Toronto, Ontario, M5S 3G4, Canada ; Ryerson University , Department of Electrical and Computer Engineering, Toronto, Ontario, M5B 2K3, Canada.
J Med Imaging (Bellingham). 2014 Apr;1(1):014002. doi: 10.1117/1.JMI.1.1.014002. Epub 2014 Apr 23.
An artifact found in magnetic resonance images (MRI) called partial volume averaging (PVA) has received much attention since accurate segmentation of cerebral anatomy and pathology is impeded by this artifact. Traditional neurological segmentation techniques rely on Gaussian mixture models to handle noise and PVA, or high-dimensional feature sets that exploit redundancy in multispectral datasets. Unfortunately, model-based techniques may not be optimal for images with non-Gaussian noise distributions and/or pathology, and multispectral techniques model probabilities instead of the partial volume (PV) fraction. For robust segmentation, a PV fraction estimation approach is developed for cerebral MRI that does not depend on predetermined intensity distribution models or multispectral scans. Instead, the PV fraction is estimated directly from each image using an adaptively defined global edge map constructed by exploiting a relationship between edge content and PVA. The final PVA map is used to segment anatomy and pathology with subvoxel accuracy. Validation on simulated and real, pathology-free T1 MRI (Gaussian noise), as well as pathological fluid attenuation inversion recovery MRI (non-Gaussian noise), demonstrate that the PV fraction is accurately estimated and the resultant segmentation is robust. Comparison to model-based methods further highlight the benefits of the current approach.
磁共振成像(MRI)中发现的一种名为部分容积平均(PVA)的伪影,由于这种伪影阻碍了大脑解剖结构和病理的准确分割,因此受到了广泛关注。传统的神经分割技术依靠高斯混合模型来处理噪声和PVA,或者利用多光谱数据集中冗余信息的高维特征集。不幸的是,基于模型的技术对于具有非高斯噪声分布和/或病理的图像可能不是最优的,并且多光谱技术建模的是概率而不是部分容积(PV)分数。为了实现稳健分割,针对脑部MRI开发了一种不依赖于预定强度分布模型或多光谱扫描的PV分数估计方法。相反,利用通过利用边缘内容与PVA之间的关系构建的自适应定义的全局边缘图,直接从每个图像估计PV分数。最终的PVA图用于以亚体素精度分割解剖结构和病理。对模拟的和真实的、无病理的T1 MRI(高斯噪声)以及病理液体衰减反转恢复MRI(非高斯噪声)进行验证,结果表明PV分数得到了准确估计,并且由此产生的分割是稳健的。与基于模型的方法进行比较进一步突出了当前方法的优势。