Suppr超能文献

脑磁共振图像中部分容积估计和组织分割的通用方法

Generalized method for partial volume estimation and tissue segmentation in cerebral magnetic resonance images.

作者信息

Khademi April, Venetsanopoulos Anastasios, Moody Alan R

机构信息

University of Guelph , Department of Biomedical Engineering, Guelph, Ontario, N1G 2W1, Canada.

University of Toronto , Department of Electrical and Computer Engineering, Toronto, Ontario, M5S 3G4, Canada ; Ryerson University , Department of Electrical and Computer Engineering, Toronto, Ontario, M5B 2K3, Canada.

出版信息

J Med Imaging (Bellingham). 2014 Apr;1(1):014002. doi: 10.1117/1.JMI.1.1.014002. Epub 2014 Apr 23.

Abstract

An artifact found in magnetic resonance images (MRI) called partial volume averaging (PVA) has received much attention since accurate segmentation of cerebral anatomy and pathology is impeded by this artifact. Traditional neurological segmentation techniques rely on Gaussian mixture models to handle noise and PVA, or high-dimensional feature sets that exploit redundancy in multispectral datasets. Unfortunately, model-based techniques may not be optimal for images with non-Gaussian noise distributions and/or pathology, and multispectral techniques model probabilities instead of the partial volume (PV) fraction. For robust segmentation, a PV fraction estimation approach is developed for cerebral MRI that does not depend on predetermined intensity distribution models or multispectral scans. Instead, the PV fraction is estimated directly from each image using an adaptively defined global edge map constructed by exploiting a relationship between edge content and PVA. The final PVA map is used to segment anatomy and pathology with subvoxel accuracy. Validation on simulated and real, pathology-free T1 MRI (Gaussian noise), as well as pathological fluid attenuation inversion recovery MRI (non-Gaussian noise), demonstrate that the PV fraction is accurately estimated and the resultant segmentation is robust. Comparison to model-based methods further highlight the benefits of the current approach.

摘要

磁共振成像(MRI)中发现的一种名为部分容积平均(PVA)的伪影,由于这种伪影阻碍了大脑解剖结构和病理的准确分割,因此受到了广泛关注。传统的神经分割技术依靠高斯混合模型来处理噪声和PVA,或者利用多光谱数据集中冗余信息的高维特征集。不幸的是,基于模型的技术对于具有非高斯噪声分布和/或病理的图像可能不是最优的,并且多光谱技术建模的是概率而不是部分容积(PV)分数。为了实现稳健分割,针对脑部MRI开发了一种不依赖于预定强度分布模型或多光谱扫描的PV分数估计方法。相反,利用通过利用边缘内容与PVA之间的关系构建的自适应定义的全局边缘图,直接从每个图像估计PV分数。最终的PVA图用于以亚体素精度分割解剖结构和病理。对模拟的和真实的、无病理的T1 MRI(高斯噪声)以及病理液体衰减反转恢复MRI(非高斯噪声)进行验证,结果表明PV分数得到了准确估计,并且由此产生的分割是稳健的。与基于模型的方法进行比较进一步突出了当前方法的优势。

相似文献

1
Generalized method for partial volume estimation and tissue segmentation in cerebral magnetic resonance images.
J Med Imaging (Bellingham). 2014 Apr;1(1):014002. doi: 10.1117/1.JMI.1.1.014002. Epub 2014 Apr 23.
2
Robust white matter lesion segmentation in FLAIR MRI.
IEEE Trans Biomed Eng. 2012 Mar;59(3):860-71. doi: 10.1109/TBME.2011.2181167. Epub 2011 Dec 22.
4
Robust generative asymmetric GMM for brain MR image segmentation.
Comput Methods Programs Biomed. 2017 Nov;151:123-138. doi: 10.1016/j.cmpb.2017.08.017. Epub 2017 Aug 24.
5
Robust spatial fuzzy GMM based MRI segmentation and carotid artery plaque detection in ultrasound images.
Comput Methods Programs Biomed. 2019 Jul;175:179-192. doi: 10.1016/j.cmpb.2019.04.026. Epub 2019 Apr 23.
7
Topology-based nonlocal fuzzy segmentation of brain MR image with inhomogeneous and partial volume intensity.
J Clin Neurophysiol. 2012 Jun;29(3):278-86. doi: 10.1097/WNP.0b013e3182570f94.
8
Edge-based partial volume averaging estimation for FLAIR MRI with white matter lesions.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:6114-7. doi: 10.1109/IEMBS.2010.5627807.
9
A unifying framework for partial volume segmentation of brain MR images.
IEEE Trans Med Imaging. 2003 Jan;22(1):105-19. doi: 10.1109/TMI.2002.806587.

引用本文的文献

1
Segmentation of white matter lesions in multicentre FLAIR MRI.
Neuroimage Rep. 2021 Aug 5;1(4):100044. doi: 10.1016/j.ynirp.2021.100044. eCollection 2021 Dec.
2
The Unresolved Methodological Challenge of Detecting Neuroplastic Changes in Astronauts.
Life (Basel). 2023 Feb 11;13(2):500. doi: 10.3390/life13020500.
4
Measurement Variability Following MRI System Upgrade.
Front Neurol. 2019 Jul 16;10:726. doi: 10.3389/fneur.2019.00726. eCollection 2019.
6
Partial volume model for brain MRI scan using MP2RAGE.
Hum Brain Mapp. 2017 Oct;38(10):5115-5127. doi: 10.1002/hbm.23719. Epub 2017 Jul 5.

本文引用的文献

1
Edge-based partial volume averaging estimation for FLAIR MRI with white matter lesions.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:6114-7. doi: 10.1109/IEMBS.2010.5627807.
2
Improved estimates of partial volume coefficients from noisy brain MRI using spatial context.
Neuroimage. 2010 Nov 1;53(2):480-90. doi: 10.1016/j.neuroimage.2010.06.046. Epub 2010 Jun 25.
3
Statistical models of partial volume effect.
IEEE Trans Image Process. 1995;4(11):1531-40. doi: 10.1109/83.469934.
4
Morphometric analysis of white matter lesions in MR images: method and validation.
IEEE Trans Med Imaging. 1994;13(4):716-24. doi: 10.1109/42.363096.
5
Genetic algorithms for finite mixture model based voxel classification in neuroimaging.
IEEE Trans Med Imaging. 2007 May;26(5):696-711. doi: 10.1109/TMI.2007.895453.
7
Fast and robust parameter estimation for statistical partial volume models in brain MRI.
Neuroimage. 2004 Sep;23(1):84-97. doi: 10.1016/j.neuroimage.2004.05.007.
8
Probabilistic segmentation of white matter lesions in MR imaging.
Neuroimage. 2004 Mar;21(3):1037-44. doi: 10.1016/j.neuroimage.2003.10.012.
9
Statistical validation of image segmentation quality based on a spatial overlap index.
Acad Radiol. 2004 Feb;11(2):178-89. doi: 10.1016/s1076-6332(03)00671-8.
10
A unifying framework for partial volume segmentation of brain MR images.
IEEE Trans Med Imaging. 2003 Jan;22(1):105-19. doi: 10.1109/TMI.2002.806587.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验