Suppr超能文献

行走执行、想象和观察过程中人类大脑的振荡。

Oscillations in the human brain during walking execution, imagination and observation.

作者信息

Cevallos C, Zarka D, Hoellinger T, Leroy A, Dan B, Cheron G

机构信息

Laboratory of Neurophysiology and Movement Biomechanics, ULB Neuroscience Institut, Université Libre de Bruxelles, CP 640, 50 Avenue Franklin Rooseveltlaan, 1050 Brussels, Belgium.

Laboratory of Neurophysiology and Movement Biomechanics, ULB Neuroscience Institut, Université Libre de Bruxelles, CP 640, 50 Avenue Franklin Rooseveltlaan, 1050 Brussels, Belgium; Haute Ecole Condorcet, Charleroi, Belgium.

出版信息

Neuropsychologia. 2015 Dec;79(Pt B):223-32. doi: 10.1016/j.neuropsychologia.2015.06.039. Epub 2015 Jul 8.

Abstract

Gait is an essential human activity which organizes many functional and cognitive behaviors. The biomechanical constraints of bipedalism implicating a permanent control of balance during gait are taken into account by a complex dialog between the cortical, subcortical and spinal networks. This networking is largely based on oscillatory coding, including changes in spectral power and phase-locking of ongoing neural activity in theta, alpha, beta and gamma frequency bands. This coding is specifically modulated in actual gait execution and representation, as well as in contexts of gait observation or imagination. A main challenge in integrative neuroscience oscillatory activity analysis is to disentangle the brain oscillations devoted to gait control. In addition to neuroimaging approaches, which have highlighted the structural components of an extended network, dynamic high-density EEG gives non-invasive access to functioning of this network. Here we revisit the neurophysiological foundations of behavior-related EEG in the light of current neuropsychological theoretic frameworks. We review different EEG rhythms emerging in the most informative paradigms relating to human gait and implications for rehabilitation strategies.

摘要

步态是一种重要的人类活动,它组织着许多功能和认知行为。双足行走的生物力学限制意味着在步态过程中需要持续控制平衡,这一点通过皮质、皮质下和脊髓网络之间的复杂对话得以体现。这种网络很大程度上基于振荡编码,包括θ、α、β和γ频段中持续神经活动的频谱功率变化和锁相。这种编码在实际步态执行和表征以及步态观察或想象的情境中会受到特定调制。整合神经科学振荡活动分析中的一个主要挑战是理清专门用于步态控制的脑振荡。除了突出扩展网络结构成分的神经成像方法外,动态高密度脑电图能够非侵入性地了解该网络的功能。在此,我们根据当前神经心理学理论框架重新审视与行为相关脑电图的神经生理学基础。我们回顾了在与人类步态最相关的信息丰富范式中出现的不同脑电节律及其对康复策略的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验