Suppr超能文献

通过多维显微镜分子分析对组织学组织特征进行自动分析和分类

Automated Analysis and Classification of Histological Tissue Features by Multi-Dimensional Microscopic Molecular Profiling.

作者信息

Riordan Daniel P, Varma Sushama, West Robert B, Brown Patrick O

机构信息

Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America.

Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America.

出版信息

PLoS One. 2015 Jul 15;10(7):e0128975. doi: 10.1371/journal.pone.0128975. eCollection 2015.

Abstract

Characterization of the molecular attributes and spatial arrangements of cells and features within complex human tissues provides a critical basis for understanding processes involved in development and disease. Moreover, the ability to automate steps in the analysis and interpretation of histological images that currently require manual inspection by pathologists could revolutionize medical diagnostics. Toward this end, we developed a new imaging approach called multidimensional microscopic molecular profiling (MMMP) that can measure several independent molecular properties in situ at subcellular resolution for the same tissue specimen. MMMP involves repeated cycles of antibody or histochemical staining, imaging, and signal removal, which ultimately can generate information analogous to a multidimensional flow cytometry analysis on intact tissue sections. We performed a MMMP analysis on a tissue microarray containing a diverse set of 102 human tissues using a panel of 15 informative antibody and 5 histochemical stains plus DAPI. Large-scale unsupervised analysis of MMMP data, and visualization of the resulting classifications, identified molecular profiles that were associated with functional tissue features. We then directly annotated H&E images from this MMMP series such that canonical histological features of interest (e.g. blood vessels, epithelium, red blood cells) were individually labeled. By integrating image annotation data, we identified molecular signatures that were associated with specific histological annotations and we developed statistical models for automatically classifying these features. The classification accuracy for automated histology labeling was objectively evaluated using a cross-validation strategy, and significant accuracy (with a median per-pixel rate of 77% per feature from 15 annotated samples) for de novo feature prediction was obtained. These results suggest that high-dimensional profiling may advance the development of computer-based systems for automatically parsing relevant histological and cellular features from molecular imaging data of arbitrary human tissue samples, and can provide a framework and resource to spur the optimization of these technologies.

摘要

对复杂人体组织内细胞的分子特性和空间排列以及特征进行表征,是理解发育和疾病相关过程的关键基础。此外,目前需要病理学家进行人工检查的组织学图像分析和解释步骤若能实现自动化,可能会彻底改变医学诊断。为此,我们开发了一种名为多维显微分子分析(MMMP)的新成像方法,该方法可以在亚细胞分辨率下原位测量同一组织标本的几种独立分子特性。MMMP包括抗体或组织化学染色、成像和信号去除的重复循环,最终可以生成类似于对完整组织切片进行多维流式细胞术分析的信息。我们使用一组15种信息丰富的抗体、5种组织化学染色剂加DAPI,对包含102种不同人类组织的组织微阵列进行了MMMP分析。对MMMP数据进行大规模无监督分析,并对所得分类进行可视化,确定了与功能性组织特征相关的分子谱。然后,我们直接对该MMMP系列的苏木精-伊红(H&E)图像进行注释,以便分别标记感兴趣的典型组织学特征(如血管、上皮、红细胞)。通过整合图像注释数据,我们确定了与特定组织学注释相关的分子特征,并开发了用于自动分类这些特征的统计模型。使用交叉验证策略客观评估了自动组织学标记的分类准确性,并获得了较高的准确性(来自15个注释样本的每个特征的中位数像素率为77%)用于从头特征预测。这些结果表明,高维分析可能会推动基于计算机的系统的发展,该系统能够从任意人类组织样本的分子成像数据中自动解析相关的组织学和细胞特征,并可以提供一个框架和资源来促进这些技术的优化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c6e/4503351/6928c1b1a33f/pone.0128975.g001.jpg

相似文献

1
Automated Analysis and Classification of Histological Tissue Features by Multi-Dimensional Microscopic Molecular Profiling.
PLoS One. 2015 Jul 15;10(7):e0128975. doi: 10.1371/journal.pone.0128975. eCollection 2015.
2
Machine learning approaches to analyze histological images of tissues from radical prostatectomies.
Comput Med Imaging Graph. 2015 Dec;46 Pt 2(Pt 2):197-208. doi: 10.1016/j.compmedimag.2015.08.002. Epub 2015 Aug 20.
3
De novo discovery of metabolic heterogeneity with immunophenotype-guided imaging mass spectrometry.
Mol Metab. 2020 Jun;36:100953. doi: 10.1016/j.molmet.2020.01.017. Epub 2020 Feb 14.
4
Quantification of telomere features in tumor tissue sections by an automated 3D imaging-based workflow.
Methods. 2017 Feb 1;114:60-73. doi: 10.1016/j.ymeth.2016.09.014. Epub 2016 Oct 7.
6
High Throughput Multispectral Image Processing with Applications in Food Science.
PLoS One. 2015 Oct 14;10(10):e0140122. doi: 10.1371/journal.pone.0140122. eCollection 2015.
7
A novel method and software for automatically classifying Alzheimer's disease patients by magnetic resonance imaging analysis.
Comput Methods Programs Biomed. 2017 May;143:89-95. doi: 10.1016/j.cmpb.2017.03.006. Epub 2017 Mar 4.
8
Visual Recognition Software for Binary Classification and Its Application to Spruce Pollen Identification.
PLoS One. 2016 Feb 11;11(2):e0148879. doi: 10.1371/journal.pone.0148879. eCollection 2016.
9
Unsupervised mitochondria segmentation using recursive spectral clustering and adaptive similarity models.
J Struct Biol. 2013 Dec;184(3):401-8. doi: 10.1016/j.jsb.2013.10.013. Epub 2013 Oct 30.
10
Unsupervised content classification based nonrigid registration of differently stained histology images.
IEEE Trans Biomed Eng. 2014 Jan;61(1):96-108. doi: 10.1109/TBME.2013.2277777. Epub 2013 Aug 8.

引用本文的文献

2
In Situ Classification of Cell Types in Human Kidney Tissue Using 3D Nuclear Staining.
Cytometry A. 2021 Jul;99(7):707-721. doi: 10.1002/cyto.a.24274. Epub 2020 Dec 13.
3
Automated Identification and Quantification of Signals in Multichannel Immunofluorescence Images: The SignalFinder-IF Platform.
Am J Pathol. 2019 Jul;189(7):1402-1412. doi: 10.1016/j.ajpath.2019.03.011. Epub 2019 Apr 23.
4
Imitating Pathologist Based Assessment With Interpretable and Context Based Neural Network Modeling of Histology Images.
Biomed Inform Insights. 2018 Oct 31;10:1178222618807481. doi: 10.1177/1178222618807481. eCollection 2018.
5
Single-Cell Computational Strategies for Lineage Reconstruction in Tissue Systems.
Cell Mol Gastroenterol Hepatol. 2018 Feb 13;5(4):539-548. doi: 10.1016/j.jcmgh.2018.01.023. eCollection 2018.
6
Multiplexed Single-Cell Imaging: Past, Present, and Future.
Assay Drug Dev Technol. 2017 Jan;15(1):8-10. doi: 10.1089/adt.2016.765. Epub 2016 Dec 22.
7
Cyclic Immunofluorescence (CycIF), A Highly Multiplexed Method for Single-cell Imaging.
Curr Protoc Chem Biol. 2016 Dec 7;8(4):251-264. doi: 10.1002/cpch.14.

本文引用的文献

1
Proteomics. Tissue-based map of the human proteome.
Science. 2015 Jan 23;347(6220):1260419. doi: 10.1126/science.1260419.
2
Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry.
Nat Methods. 2014 Apr;11(4):417-22. doi: 10.1038/nmeth.2869. Epub 2014 Mar 2.
3
Multiplexed ion beam imaging of human breast tumors.
Nat Med. 2014 Apr;20(4):436-42. doi: 10.1038/nm.3488. Epub 2014 Mar 2.
4
DiSWOP: a novel measure for cell-level protein network analysis in localized proteomics image data.
Bioinformatics. 2014 Feb 1;30(3):420-7. doi: 10.1093/bioinformatics/btt676. Epub 2013 Nov 21.
5
Highly multiplexed single-cell analysis of formalin-fixed, paraffin-embedded cancer tissue.
Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):11982-7. doi: 10.1073/pnas.1300136110. Epub 2013 Jul 1.
6
Structural and molecular interrogation of intact biological systems.
Nature. 2013 May 16;497(7449):332-7. doi: 10.1038/nature12107. Epub 2013 Apr 10.
7
Quantum dot imaging platform for single-cell molecular profiling.
Nat Commun. 2013;4:1619. doi: 10.1038/ncomms2635.
8
Fiji: an open-source platform for biological-image analysis.
Nat Methods. 2012 Jun 28;9(7):676-82. doi: 10.1038/nmeth.2019.
9
WHIDE--a web tool for visual data mining colocation patterns in multivariate bioimages.
Bioinformatics. 2012 Apr 15;28(8):1143-50. doi: 10.1093/bioinformatics/bts104. Epub 2012 Mar 5.
10
Predictive pathology in routine diagnostics of solid tumors.
Histol Histopathol. 2012 Mar;27(3):289-96. doi: 10.14670/HH-27.289.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验