Suppr超能文献

通过主客体结合热力学的敏感性分析提高力场精度

Toward Improved Force-Field Accuracy through Sensitivity Analysis of Host-Guest Binding Thermodynamics.

作者信息

Yin Jian, Fenley Andrew T, Henriksen Niel M, Gilson Michael K

机构信息

Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0736, United States.

出版信息

J Phys Chem B. 2015 Aug 13;119(32):10145-55. doi: 10.1021/acs.jpcb.5b04262. Epub 2015 Aug 5.

Abstract

Improving the capability of atomistic computer models to predict the thermodynamics of noncovalent binding is critical for successful structure-based drug design, and the accuracy of such calculations remains limited by nonoptimal force field parameters. Ideally, one would incorporate protein-ligand affinity data into force field parametrization, but this would be inefficient and costly. We now demonstrate that sensitivity analysis can be used to efficiently tune Lennard-Jones parameters of aqueous host-guest systems for increasingly accurate calculations of binding enthalpy. These results highlight the promise of a comprehensive use of calorimetric host-guest binding data, along with existing validation data sets, to improve force field parameters for the simulation of noncovalent binding, with the ultimate goal of making protein-ligand modeling more accurate and hence speeding drug discovery.

摘要

提高原子计算机模型预测非共价结合热力学的能力对于基于结构的药物设计的成功至关重要,而此类计算的准确性仍然受到非最优力场参数的限制。理想情况下,人们会将蛋白质-配体亲和力数据纳入力场参数化,但这将效率低下且成本高昂。我们现在证明,敏感性分析可用于有效地调整水相主体-客体系统的 Lennard-Jones 参数,以更准确地计算结合焓。这些结果凸显了全面利用量热法主体-客体结合数据以及现有验证数据集来改进用于模拟非共价结合的力场参数的前景,其最终目标是使蛋白质-配体建模更加准确,从而加速药物发现。

相似文献

1
Toward Improved Force-Field Accuracy through Sensitivity Analysis of Host-Guest Binding Thermodynamics.
J Phys Chem B. 2015 Aug 13;119(32):10145-55. doi: 10.1021/acs.jpcb.5b04262. Epub 2015 Aug 5.
2
Overview of the SAMPL6 host-guest binding affinity prediction challenge.
J Comput Aided Mol Des. 2018 Oct;32(10):937-963. doi: 10.1007/s10822-018-0170-6. Epub 2018 Nov 10.
3
SAMPL6 host-guest challenge: binding free energies via a multistep approach.
J Comput Aided Mol Des. 2018 Oct;32(10):1097-1115. doi: 10.1007/s10822-018-0159-1. Epub 2018 Sep 17.
4
Overview of the SAMPL5 host-guest challenge: Are we doing better?
J Comput Aided Mol Des. 2017 Jan;31(1):1-19. doi: 10.1007/s10822-016-9974-4. Epub 2016 Sep 22.
5
Binding enthalpy calculations for a neutral host-guest pair yield widely divergent salt effects across water models.
J Chem Theory Comput. 2015 Oct 13;11(10):4555-64. doi: 10.1021/acs.jctc.5b00676. Epub 2015 Sep 18.
6
Detailed potential of mean force studies on host-guest systems from the SAMPL6 challenge.
J Comput Aided Mol Des. 2018 Oct;32(10):1013-1026. doi: 10.1007/s10822-018-0153-7. Epub 2018 Aug 24.
7
Computational Calorimetry: High-Precision Calculation of Host-Guest Binding Thermodynamics.
J Chem Theory Comput. 2015 Sep 8;11(9):4377-94. doi: 10.1021/acs.jctc.5b00405.
8
The SAMPL6 SAMPLing challenge: assessing the reliability and efficiency of binding free energy calculations.
J Comput Aided Mol Des. 2020 May;34(5):601-633. doi: 10.1007/s10822-020-00290-5. Epub 2020 Jan 27.
9
Absolute binding free energies for the SAMPL6 cucurbit[8]uril host-guest challenge via the AMOEBA polarizable force field.
J Comput Aided Mol Des. 2018 Oct;32(10):1087-1095. doi: 10.1007/s10822-018-0147-5. Epub 2018 Oct 15.
10
Prediction of SAMPL4 host-guest binding affinities using funnel metadynamics.
J Comput Aided Mol Des. 2014 Apr;28(4):443-54. doi: 10.1007/s10822-014-9724-4. Epub 2014 Feb 18.

引用本文的文献

1
2
Tuning Potential Functions to Host-Guest Binding Data.
J Chem Theory Comput. 2024 Jan 9;20(1):239-252. doi: 10.1021/acs.jctc.3c01050. Epub 2023 Dec 26.
3
The temperature-dependence of host-guest binding thermodynamics: experimental and simulation studies.
Chem Sci. 2023 Oct 13;14(42):11818-11829. doi: 10.1039/d3sc01975f. eCollection 2023 Nov 1.
4
Influence of the Lennard-Jones Combination Rules on the Simulated Properties of Organic Liquids at Optimal Force-Field Parametrization.
J Chem Theory Comput. 2023 Apr 11;19(7):2048-2063. doi: 10.1021/acs.jctc.2c01170. Epub 2023 Mar 15.
6
Data-driven analysis of the number of Lennard-Jones types needed in a force field.
Commun Chem. 2020;3(1). doi: 10.1038/s42004-020-00395-w. Epub 2020 Nov 13.
7
DeepBAR: A Fast and Exact Method for Binding Free Energy Computation.
J Phys Chem Lett. 2021 Mar 18;12(10):2509-2515. doi: 10.1021/acs.jpclett.1c00189. Epub 2021 Mar 15.
8
Polarizable Force Fields for Biomolecular Simulations: Recent Advances and Applications.
Annu Rev Biophys. 2019 May 6;48:371-394. doi: 10.1146/annurev-biophys-070317-033349. Epub 2019 Mar 27.
9
Overview of the SAMPL6 host-guest binding affinity prediction challenge.
J Comput Aided Mol Des. 2018 Oct;32(10):937-963. doi: 10.1007/s10822-018-0170-6. Epub 2018 Nov 10.

本文引用的文献

3
The MARTINI Coarse-Grained Force Field: Extension to Proteins.
J Chem Theory Comput. 2008 May;4(5):819-34. doi: 10.1021/ct700324x.
4
Optimizing Protein-Protein van der Waals Interactions for the AMBER ff9x/ff12 Force Field.
J Chem Theory Comput. 2014 Jan 14;10(1):273-81. doi: 10.1021/ct400610x. Epub 2013 Dec 3.
5
Building Force Fields: An Automatic, Systematic, and Reproducible Approach.
J Phys Chem Lett. 2014 Jun 5;5(11):1885-91. doi: 10.1021/jz500737m. Epub 2014 May 16.
7
Bridging Calorimetry and Simulation through Precise Calculations of Cucurbituril-Guest Binding Enthalpies.
J Chem Theory Comput. 2014 Sep 9;10(9):4069-4078. doi: 10.1021/ct5004109. Epub 2014 Jul 23.
9
Optimizing potentials for a liquid mixture: a new force field for a tert-butanol and water solution.
J Phys Chem B. 2015 Jan 22;119(3):836-49. doi: 10.1021/jp505401m. Epub 2014 Aug 8.
10
MDGRAPE-4: a special-purpose computer system for molecular dynamics simulations.
Philos Trans A Math Phys Eng Sci. 2014 Aug 6;372(2021). doi: 10.1098/rsta.2013.0387.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验