Suppr超能文献

用于组织工程应用的聚合物基支架上的纳米级细胞外基质涂层。

Nanometer-sized extracellular matrix coating on polymer-based scaffold for tissue engineering applications.

作者信息

Uchida Noriyuki, Sivaraman Srikanth, Amoroso Nicholas J, Wagner William R, Nishiguchi Akihiro, Matsusaki Michiya, Akashi Mitsuru, Nagatomi Jiro

机构信息

Department of Chemistry and Biotechnology, School of Engineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8656, Japan.

RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.

出版信息

J Biomed Mater Res A. 2016 Jan;104(1):94-103. doi: 10.1002/jbm.a.35544. Epub 2015 Aug 6.

Abstract

Surface modification can play a crucial role in enhancing cell adhesion to synthetic polymer-based scaffolds in tissue engineering applications. Here, we report a novel approach for layer-by-layer (LbL) fabrication of nanometer-size fibronectin and gelatin (FN-G) layers on electrospun fibrous poly(carbonate urethane)urea (PCUU) scaffolds. Alternate immersions into the solutions of fibronectin and gelatin provided thickness-controlled FN-G nano-layers (PCUU(FN-G) ) which maintained the scaffold's 3D structure and width of fibrous bundle of PCUU as evidenced by scanning electron miscroscopy. The PCUU(FN-G) scaffold improved cell adhesion and proliferation of bladder smooth muscles (BSMCs) when compared to uncoated PCUU. The high affinity of PCUU(FN-G) for cells was further demonstrated by migration of adherent BSMCs from culture plates to the scaffold. Moreover, the culture of UROtsa cells, human urothelium-derived cell line, on PCUU(FN-G) resulted in an 11-15 μm thick multilayered cell structure with cell-to-cell contacts although many UROtsa cells died without forming cell connections on PCUU. Together these results indicate that this approach will aid in advancing the technology for engineering bladder tissues in vitro. Because FN-G nano-layers formation is based on nonspecific physical adsorption of fibronectin onto polymer and its subsequent interactions with gelatin, this technique may be applicable to other polymer-based scaffold systems for various tissue engineering/regenerative medicine applications.

摘要

在组织工程应用中,表面改性对于增强细胞与合成聚合物基支架的粘附性可能起着至关重要的作用。在此,我们报告了一种在电纺聚(碳酸酯聚氨酯)脲(PCUU)纤维支架上逐层(LbL)制备纳米级纤连蛋白和明胶(FN-G)层的新方法。交替浸入纤连蛋白和明胶溶液中可提供厚度可控的FN-G纳米层(PCUU(FN-G)),扫描电子显微镜显示,该纳米层保持了PCUU支架的三维结构和纤维束宽度。与未涂层的PCUU相比,PCUU(FN-G)支架改善了膀胱平滑肌细胞(BSMCs)的粘附和增殖。粘附的BSMCs从培养板迁移到支架上,进一步证明了PCUU(FN-G)对细胞具有高亲和力。此外,在PCUU(FN-G)上培养人尿路上皮来源的细胞系UROtsa细胞,形成了具有细胞间接触的11 - 15μm厚的多层细胞结构,尽管许多UROtsa细胞在PCUU上未形成细胞连接就死亡了。这些结果共同表明,这种方法将有助于推进体外工程化膀胱组织的技术。由于FN-G纳米层的形成基于纤连蛋白在聚合物上的非特异性物理吸附及其随后与明胶的相互作用,该技术可能适用于其他基于聚合物的支架系统,用于各种组织工程/再生医学应用。

相似文献

1
Nanometer-sized extracellular matrix coating on polymer-based scaffold for tissue engineering applications.
J Biomed Mater Res A. 2016 Jan;104(1):94-103. doi: 10.1002/jbm.a.35544. Epub 2015 Aug 6.
3
Evaluation of Poly (Carbonate-Urethane) Urea (PCUU) Scaffolds for Urinary Bladder Tissue Engineering.
Ann Biomed Eng. 2019 Mar;47(3):891-901. doi: 10.1007/s10439-018-02182-0. Epub 2018 Dec 12.
4
Porogen-induced surface modification of nano-fibrous poly(L-lactic acid) scaffolds for tissue engineering.
Biomaterials. 2006 Jul;27(21):3980-7. doi: 10.1016/j.biomaterials.2006.03.008. Epub 2006 Mar 31.
5
Cellular response to gelatin- and fibronectin-coated multilayer polyelectrolyte nanofilms.
IEEE Trans Nanobioscience. 2005 Jun;4(2):170-9. doi: 10.1109/tnb.2005.850477.
8
Three-Dimensional Tissue Models Constructed by Cells with Nanometer- or Micrometer-Sized Films on the Surfaces.
Chem Rec. 2016 Apr;16(2):783-96. doi: 10.1002/tcr.201500272. Epub 2016 Feb 29.
9
TGFβ2 differentially modulates smooth muscle cell proliferation and migration in electrospun gelatin-fibrinogen constructs.
Biomaterials. 2015 Jan;37:164-73. doi: 10.1016/j.biomaterials.2014.10.021. Epub 2014 Oct 22.
10
Biodegradable, elastomeric coatings with controlled anti-proliferative agent release for magnesium-based cardiovascular stents.
Colloids Surf B Biointerfaces. 2016 Aug 1;144:170-179. doi: 10.1016/j.colsurfb.2016.03.086. Epub 2016 Apr 7.

引用本文的文献

1
Suspension electrospinning of decellularized extracellular matrix: A new method to preserve bioactivity.
Bioact Mater. 2024 Aug 28;41:640-656. doi: 10.1016/j.bioactmat.2024.08.012. eCollection 2024 Nov.
2
Sources, Selection, and Microenvironmental Preconditioning of Cells for Urethral Tissue Engineering.
Int J Mol Sci. 2022 Nov 15;23(22):14074. doi: 10.3390/ijms232214074.
3
Extracellular Matrix-Based Biomaterials for Cardiovascular Tissue Engineering.
J Cardiovasc Dev Dis. 2021 Oct 22;8(11):137. doi: 10.3390/jcdd8110137.
4
Electrospinning: Application and Prospects for Urologic Tissue Engineering.
Front Bioeng Biotechnol. 2020 Oct 7;8:579925. doi: 10.3389/fbioe.2020.579925. eCollection 2020.
5
Interactions at engineered graft-tissue interfaces: A review.
APL Bioeng. 2020 Aug 21;4(3):031502. doi: 10.1063/5.0014519. eCollection 2020 Sep.
6
Future Research Directions in the Design of Versatile Extracellular Matrix in Tissue Engineering.
Int Neurourol J. 2018 Jul;22(Suppl 2):S66-75. doi: 10.5213/inj.1836154.077. Epub 2018 Jul 31.
7
Aligned fibrous PVDF-TrFE scaffolds with Schwann cells support neurite extension and myelination in vitro.
J Neural Eng. 2018 Oct;15(5):056010. doi: 10.1088/1741-2552/aac77f. Epub 2018 May 24.
8
Composite 3D printed scaffold with structured electrospun nanofibers promotes chondrocyte adhesion and infiltration.
Cell Adh Migr. 2018 May 4;12(3):271-285. doi: 10.1080/19336918.2017.1385713. Epub 2017 Nov 13.
9
Biofabrication and biomaterials for urinary tract reconstruction.
Res Rep Urol. 2017 May 10;9:79-92. doi: 10.2147/RRU.S127209. eCollection 2017.
10
Stem Cells in Functional Bladder Engineering.
Transfus Med Hemother. 2016 Sep;43(5):328-335. doi: 10.1159/000447977. Epub 2016 Aug 31.

本文引用的文献

1
Hydrogels for tissue engineering and regenerative medicine.
J Mater Chem B. 2014 Sep 7;2(33):5319-5338. doi: 10.1039/c4tb00775a. Epub 2014 Jul 21.
2
Biomimetic polyurethanes in nano and regenerative medicine.
J Mater Chem B. 2014 Aug 28;2(32):5128-5144. doi: 10.1039/c4tb00525b. Epub 2014 Jul 10.
3
Porous starch/cellulose nanofibers composite prepared by salt leaching technique for tissue engineering.
Carbohydr Polym. 2014 Aug 8;108:232-8. doi: 10.1016/j.carbpol.2014.02.075. Epub 2014 Mar 12.
4
Effects of angiogenic factors and 3D-microenvironments on vascularization within sandwich cultures.
Biomaterials. 2014 Jun;35(17):4739-48. doi: 10.1016/j.biomaterials.2014.01.079. Epub 2014 Mar 18.
5
An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering.
Int J Mol Sci. 2014 Feb 28;15(3):3640-59. doi: 10.3390/ijms15033640.
6
Tissue engineering of urinary bladder and urethra: advances from bench to patients.
ScientificWorldJournal. 2013 Dec 24;2013:154564. doi: 10.1155/2013/154564. eCollection 2013.
9
Cell-scaffold interactions in the bone tissue engineering triad.
Eur Cell Mater. 2013 Sep 20;26:120-32. doi: 10.22203/ecm.v026a09.
10
Urothelial cell culture.
Methods Mol Biol. 2013;1037:27-43. doi: 10.1007/978-1-62703-505-7_2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验