Khanna Astha, Zamani Maedeh, Huang Ngan F
Graver Technologies, Newark, NJ 07105, USA.
Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA.
J Cardiovasc Dev Dis. 2021 Oct 22;8(11):137. doi: 10.3390/jcdd8110137.
Regenerative medicine and tissue engineering strategies have made remarkable progress in remodeling, replacing, and regenerating damaged cardiovascular tissues. The design of three-dimensional (3D) scaffolds with appropriate biochemical and mechanical characteristics is critical for engineering tissue-engineered replacements. The extracellular matrix (ECM) is a dynamic scaffolding structure characterized by tissue-specific biochemical, biophysical, and mechanical properties that modulates cellular behavior and activates highly regulated signaling pathways. In light of technological advancements, biomaterial-based scaffolds have been developed that better mimic physiological ECM properties, provide signaling cues that modulate cellular behavior, and form functional tissues and organs. In this review, we summarize the in vitro, pre-clinical, and clinical research models that have been employed in the design of ECM-based biomaterials for cardiovascular regenerative medicine. We highlight the research advancements in the incorporation of ECM components into biomaterial-based scaffolds, the engineering of increasingly complex structures using biofabrication and spatial patterning techniques, the regulation of ECMs on vascular differentiation and function, and the translation of ECM-based scaffolds for vascular graft applications. Finally, we discuss the challenges, future perspectives, and directions in the design of next-generation ECM-based biomaterials for cardiovascular tissue engineering and clinical translation.
再生医学和组织工程策略在重塑、替换和再生受损心血管组织方面取得了显著进展。设计具有适当生化和机械特性的三维(3D)支架对于构建组织工程替代物至关重要。细胞外基质(ECM)是一种动态的支架结构,具有组织特异性的生化、生物物理和机械特性,可调节细胞行为并激活高度调控的信号通路。鉴于技术进步,已开发出基于生物材料的支架,其能更好地模拟生理ECM特性,提供调节细胞行为的信号线索,并形成功能性组织和器官。在本综述中,我们总结了用于心血管再生医学的基于ECM的生物材料设计中所采用的体外、临床前和临床研究模型。我们强调了将ECM成分纳入基于生物材料的支架中的研究进展、使用生物制造和空间图案化技术构建日益复杂结构的工程学、ECM对血管分化和功能的调节以及基于ECM的支架在血管移植物应用中的转化。最后,我们讨论了用于心血管组织工程和临床转化的下一代基于ECM的生物材料设计中的挑战、未来前景和方向。