Tien Nai-Wen, Pearson James T, Heller Charles R, Demas Jay, Kerschensteiner Daniel
Department of Ophthalmology and Visual Sciences, Graduate Programs in Neuroscience and.
Department of Ophthalmology and Visual Sciences, Developmental, Regenerative, and Stem Cell Biology.
J Neurosci. 2015 Jul 29;35(30):10815-20. doi: 10.1523/JNEUROSCI.1521-15.2015.
Spike trains of retinal ganglion cells (RGCs) are the sole source of visual information to the brain; and understanding how the ∼20 RGC types in mammalian retinae respond to diverse visual features and events is fundamental to understanding vision. Suppressed-by-contrast (SbC) RGCs stand apart from all other RGC types in that they reduce rather than increase firing rates in response to light increments (ON) and decrements (OFF). Here, we genetically identify and morphologically characterize SbC-RGCs in mice, and target them for patch-clamp recordings under two-photon guidance. We find that strong ON inhibition (glycine > GABA) outweighs weak ON excitation, and that inhibition (glycine > GABA) coincides with decreases in excitation at light OFF. These input patterns explain the suppressive spike responses of SbC-RGCs, which are observed in dim and bright light conditions. Inhibition to SbC-RGC is driven by rectified receptive field subunits, leading us to hypothesize that SbC-RGCs could signal pattern-independent changes in the retinal image. Indeed, we find that shifts of random textures matching saccade-like eye movements in mice elicit robust inhibitory inputs and suppress spiking of SbC-RGCs over a wide range of texture contrasts and spatial frequencies. Similarly, stimuli based on kinematic analyses of mouse blinking consistently suppress SbC-RGC spiking. Receiver operating characteristics show that SbC-RGCs are reliable indicators of self-generated visual stimuli that may contribute to central processing of blinks and saccades.
This study genetically identifies and morphologically characterizes suppressed-by-contrast retinal ganglion cells (SbC-RGCs) in mice. Targeted patch-clamp recordings from SbC-RGCs under two-photon guidance elucidate the synaptic mechanisms mediating spike suppression to contrast steps, and reveal that SbC-RGCs respond reliably to stimuli mimicking saccade-like eye movements and blinks. The similarity of responses to saccade-like eye movements and blinks suggests that SbC-RGCs may provide a unified signal for self-generated visual stimuli.
视网膜神经节细胞(RGC)的脉冲序列是大脑视觉信息的唯一来源;了解哺乳动物视网膜中约20种RGC类型如何对各种视觉特征和事件做出反应,是理解视觉的基础。对比度抑制(SbC)RGC与所有其他RGC类型不同,因为它们在响应光增强(开)和减弱(关)时会降低而不是增加放电频率。在这里,我们通过基因鉴定并在形态上表征了小鼠中的SbC-RGC,并在双光子引导下对它们进行膜片钳记录。我们发现,强烈的开抑制(甘氨酸>GABA)超过了微弱的开兴奋,并且抑制(甘氨酸>GABA)与光关时兴奋的降低相吻合。这些输入模式解释了在暗光和亮光条件下观察到的SbC-RGC的抑制性脉冲反应。对SbC-RGC的抑制由整流后的感受野亚基驱动,这使我们推测SbC-RGC可能发出视网膜图像中与模式无关的变化信号。事实上,我们发现,与小鼠扫视样眼动相匹配的随机纹理的移动会引发强大的抑制性输入,并在广泛的纹理对比度和空间频率范围内抑制SbC-RGC的放电。同样,基于小鼠眨眼运动学分析的刺激也会持续抑制SbC-RGC的放电。受试者工作特征表明,SbC-RGC是自我产生的视觉刺激的可靠指标,可能有助于对眨眼和扫视进行中枢处理。
本研究通过基因鉴定并在形态上表征了小鼠中的对比度抑制视网膜神经节细胞(SbC-RGC)。在双光子引导下对SbC-RGC进行靶向膜片钳记录,阐明了介导对对比度变化的脉冲抑制的突触机制,并揭示了SbC-RGC对模拟扫视样眼动和眨眼的刺激有可靠反应。对扫视样眼动和眨眼反应的相似性表明,SbC-RGC可能为自我产生的视觉刺激提供统一信号。