Chen Chunlai, Cui Xiaonan, Beausang John F, Zhang Haibo, Farrell Ian, Cooperman Barry S, Goldman Yale E
Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6085; Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6083;
Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323;
Proc Natl Acad Sci U S A. 2016 Jul 5;113(27):7515-20. doi: 10.1073/pnas.1602668113. Epub 2016 Jun 16.
During the translocation step of prokaryotic protein synthesis, elongation factor G (EF-G), a guanosine triphosphatase (GTPase), binds to the ribosomal PRE-translocation (PRE) complex and facilitates movement of transfer RNAs (tRNAs) and messenger RNA (mRNA) by one codon. Energy liberated by EF-G's GTPase activity is necessary for EF-G to catalyze rapid and precise translocation. Whether this energy is used mainly to drive movements of the tRNAs and mRNA or to foster EF-G dissociation from the ribosome after translocation has been a long-lasting debate. Free EF-G, not bound to the ribosome, adopts quite different structures in its GTP and GDP forms. Structures of EF-G on the ribosome have been visualized at various intermediate steps along the translocation pathway, using antibiotics and nonhydolyzable GTP analogs to block translocation and to prolong the dwell time of EF-G on the ribosome. However, the structural dynamics of EF-G bound to the ribosome have not yet been described during normal, uninhibited translocation. Here, we report the rotational motions of EF-G domains during normal translocation detected by single-molecule polarized total internal reflection fluorescence (polTIRF) microscopy. Our study shows that EF-G has a small (∼10°) global rotational motion relative to the ribosome after GTP hydrolysis that exerts a force to unlock the ribosome. This is followed by a larger rotation within domain III of EF-G before its dissociation from the ribosome.
在原核生物蛋白质合成的转位步骤中,延伸因子G(EF-G)作为一种鸟苷三磷酸酶(GTPase),与核糖体转位前(PRE)复合物结合,并促进转运RNA(tRNA)和信使RNA(mRNA)移动一个密码子的距离。EF-G的GTPase活性释放的能量对于EF-G催化快速且精确的转位是必需的。这种能量主要是用于驱动tRNA和mRNA的移动,还是用于促进转位后EF-G从核糖体上解离,这一直是个长期争论的问题。未与核糖体结合的游离EF-G在其GTP和GDP形式下具有截然不同的结构。沿着转位途径的各个中间步骤中,利用抗生素和不可水解的GTP类似物来阻断转位并延长EF-G在核糖体上的停留时间,已观察到核糖体上EF-G的结构。然而,在正常的、未受抑制的转位过程中,尚未描述与核糖体结合的EF-G的结构动态。在此,我们报告了通过单分子偏振全内反射荧光(polTIRF)显微镜检测到的正常转位过程中EF-G结构域的旋转运动。我们的研究表明,GTP水解后,EF-G相对于核糖体有一个小的(约10°)整体旋转运动,该运动施加一个力来解锁核糖体。随后,在EF-G从核糖体解离之前,其结构域III内会发生更大的旋转。