Suppr超能文献

延伸因子G通过动力冲程启动转位。

Elongation factor G initiates translocation through a power stroke.

作者信息

Chen Chunlai, Cui Xiaonan, Beausang John F, Zhang Haibo, Farrell Ian, Cooperman Barry S, Goldman Yale E

机构信息

Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6085; Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6083;

Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323;

出版信息

Proc Natl Acad Sci U S A. 2016 Jul 5;113(27):7515-20. doi: 10.1073/pnas.1602668113. Epub 2016 Jun 16.

Abstract

During the translocation step of prokaryotic protein synthesis, elongation factor G (EF-G), a guanosine triphosphatase (GTPase), binds to the ribosomal PRE-translocation (PRE) complex and facilitates movement of transfer RNAs (tRNAs) and messenger RNA (mRNA) by one codon. Energy liberated by EF-G's GTPase activity is necessary for EF-G to catalyze rapid and precise translocation. Whether this energy is used mainly to drive movements of the tRNAs and mRNA or to foster EF-G dissociation from the ribosome after translocation has been a long-lasting debate. Free EF-G, not bound to the ribosome, adopts quite different structures in its GTP and GDP forms. Structures of EF-G on the ribosome have been visualized at various intermediate steps along the translocation pathway, using antibiotics and nonhydolyzable GTP analogs to block translocation and to prolong the dwell time of EF-G on the ribosome. However, the structural dynamics of EF-G bound to the ribosome have not yet been described during normal, uninhibited translocation. Here, we report the rotational motions of EF-G domains during normal translocation detected by single-molecule polarized total internal reflection fluorescence (polTIRF) microscopy. Our study shows that EF-G has a small (∼10°) global rotational motion relative to the ribosome after GTP hydrolysis that exerts a force to unlock the ribosome. This is followed by a larger rotation within domain III of EF-G before its dissociation from the ribosome.

摘要

在原核生物蛋白质合成的转位步骤中,延伸因子G(EF-G)作为一种鸟苷三磷酸酶(GTPase),与核糖体转位前(PRE)复合物结合,并促进转运RNA(tRNA)和信使RNA(mRNA)移动一个密码子的距离。EF-G的GTPase活性释放的能量对于EF-G催化快速且精确的转位是必需的。这种能量主要是用于驱动tRNA和mRNA的移动,还是用于促进转位后EF-G从核糖体上解离,这一直是个长期争论的问题。未与核糖体结合的游离EF-G在其GTP和GDP形式下具有截然不同的结构。沿着转位途径的各个中间步骤中,利用抗生素和不可水解的GTP类似物来阻断转位并延长EF-G在核糖体上的停留时间,已观察到核糖体上EF-G的结构。然而,在正常的、未受抑制的转位过程中,尚未描述与核糖体结合的EF-G的结构动态。在此,我们报告了通过单分子偏振全内反射荧光(polTIRF)显微镜检测到的正常转位过程中EF-G结构域的旋转运动。我们的研究表明,GTP水解后,EF-G相对于核糖体有一个小的(约10°)整体旋转运动,该运动施加一个力来解锁核糖体。随后,在EF-G从核糖体解离之前,其结构域III内会发生更大的旋转。

相似文献

1
Elongation factor G initiates translocation through a power stroke.
Proc Natl Acad Sci U S A. 2016 Jul 5;113(27):7515-20. doi: 10.1073/pnas.1602668113. Epub 2016 Jun 16.
2
3
Translocation as continuous movement through the ribosome.
RNA Biol. 2016 Dec;13(12):1197-1203. doi: 10.1080/15476286.2016.1240140. Epub 2016 Nov 1.
4
Role of domains 4 and 5 in elongation factor G functions on the ribosome.
J Mol Biol. 2000 Jul 21;300(4):951-61. doi: 10.1006/jmbi.2000.3886.
6
Specific interaction between EF-G and RRF and its implication for GTP-dependent ribosome splitting into subunits.
J Mol Biol. 2007 Dec 14;374(5):1345-58. doi: 10.1016/j.jmb.2007.10.021. Epub 2007 Oct 16.
7
EF-G Activation by Phosphate Analogs.
J Mol Biol. 2016 May 22;428(10 Pt B):2248-58. doi: 10.1016/j.jmb.2016.03.032. Epub 2016 Apr 8.
8
Movement in ribosome translocation.
J Biol. 2005;4(2):8. doi: 10.1186/jbiol27. Epub 2005 Jun 27.
9
Role and timing of GTP binding and hydrolysis during EF-G-dependent tRNA translocation on the ribosome.
Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13670-5. doi: 10.1073/pnas.0606099103. Epub 2006 Aug 29.

引用本文的文献

1
Photostability of organic fluorophore influenced by adjacent amino acid residues.
Commun Chem. 2025 Aug 27;8(1):262. doi: 10.1038/s42004-025-01661-5.
2
POLCAM: instant molecular orientation microscopy for the life sciences.
Nat Methods. 2024 Oct;21(10):1873-1883. doi: 10.1038/s41592-024-02382-8. Epub 2024 Oct 7.
4
On the response of elongating ribosomes to forces opposing translocation.
Biophys J. 2024 Sep 17;123(18):3010-3023. doi: 10.1016/j.bpj.2024.05.032. Epub 2024 Jun 6.
5
Partial spontaneous intersubunit rotations in pretranslocation ribosomes.
Proc Natl Acad Sci U S A. 2023 Oct 10;120(41):e2114979120. doi: 10.1073/pnas.2114979120. Epub 2023 Oct 6.
6
A model for ribosome translocation based on the alternated displacement of its subunits.
Eur Biophys J. 2023 Apr;52(3):175-187. doi: 10.1007/s00249-023-01662-z. Epub 2023 Jun 9.
8
Detection of immunoreactive proteins of , , and isolated from cows with diagnosed mastitis.
Front Cell Infect Microbiol. 2023 Feb 10;13:987842. doi: 10.3389/fcimb.2023.987842. eCollection 2023.
9
New Insights into the Mechanism of Antibacterial Action of Synthetic Peptide -CBP-PepI against .
Antibiotics (Basel). 2022 Dec 4;11(12):1753. doi: 10.3390/antibiotics11121753.
10
The role of GTP hydrolysis by EF-G in ribosomal translocation.
Proc Natl Acad Sci U S A. 2022 Nov;119(44):e2212502119. doi: 10.1073/pnas.2212502119. Epub 2022 Oct 25.

本文引用的文献

1
Dual use of GTP hydrolysis by elongation factor G on the ribosome.
Translation (Austin). 2013 Apr 1;1(1):e24315. doi: 10.4161/trla.24315. eCollection 2013.
2
Molecular mechanism of viomycin inhibition of peptide elongation in bacteria.
Proc Natl Acad Sci U S A. 2016 Jan 26;113(4):978-83. doi: 10.1073/pnas.1517541113. Epub 2016 Jan 11.
4
Conformational changes of elongation factor G on the ribosome during tRNA translocation.
Cell. 2015 Jan 15;160(1-2):219-27. doi: 10.1016/j.cell.2014.11.049.
5
Movement of elongation factor G between compact and extended conformations.
J Mol Biol. 2015 Jan 30;427(2):454-67. doi: 10.1016/j.jmb.2014.11.010. Epub 2014 Nov 15.
6
Following movement of domain IV of elongation factor G during ribosomal translocation.
Proc Natl Acad Sci U S A. 2014 Oct 21;111(42):15060-5. doi: 10.1073/pnas.1410873111. Epub 2014 Oct 6.
7
How the ribosome hands the A-site tRNA to the P site during EF-G-catalyzed translocation.
Science. 2014 Sep 5;345(6201):1188-91. doi: 10.1126/science.1255030.
8
Direct measurement of the mechanical work during translocation by the ribosome.
Elife. 2014 Aug 11;3:e03406. doi: 10.7554/eLife.03406.
9
EF-G catalyzes tRNA translocation by disrupting interactions between decoding center and codon-anticodon duplex.
Nat Struct Mol Biol. 2014 Sep;21(9):817-24. doi: 10.1038/nsmb.2869. Epub 2014 Aug 10.
10
The ribosome uses cooperative conformational changes to maximize and regulate the efficiency of translation.
Proc Natl Acad Sci U S A. 2014 Aug 19;111(33):12073-8. doi: 10.1073/pnas.1401864111. Epub 2014 Aug 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验