Suppr超能文献

晶状体结构成分的电学特性。

Electrical properties of structural components of the crystalline lens.

作者信息

Mathias R T, Rae J L, Eisenberg R S

出版信息

Biophys J. 1979 Jan;25(1):181-201. doi: 10.1016/S0006-3495(79)85284-4.

Abstract

The electrical properties of the crystalline lens of the frog eye are measured with stochastic currents applied with a microelectrode near the center of the preparation and potential recorded just under the surface. The stochastic signals are decomposed by Fourier analysis into sinusoidal components, and the impedance is determined from the ratio of mean cross power to input power. The data are fit by an electrical model that includes two paths for current flow: one through the cytoplasm, gap junctions, and outer membrane; the other through inner membranes and the extracellular space between lens fibers. The electrical properties of the structures of the lens which appear as circuit components in the model are determined by the fit to the data. The resistivity of the extracellular space within the lens is comparable to the resistivity of Ringer. The outer membrane has a normal resistance of 5 kohm . cm(2) but large capacitance of 10 muF/cm(2), probably because it represents the properties of several layers of fibers. The inner membranes have properties reminiscent of artificial lipid bilayers: they have high membrane resistance, 2.2 megohm . cm(2), and low specific capacitance, 0.8 muF/cm(2). There is so much membrane within the lens, however, that the sum of the current flow across all the inner membranes is comparable to that across the outer surface.

摘要

用微电极在靠近标本中心处施加随机电流,并在标本表面正下方记录电位,以此测量蛙眼晶状体的电学特性。通过傅里叶分析将随机信号分解为正弦分量,并根据平均交叉功率与输入功率之比确定阻抗。数据由一个电学模型拟合,该模型包括两条电流通路:一条通过细胞质、缝隙连接和外膜;另一条通过内膜和晶状体纤维之间的细胞外空间。模型中表现为电路元件的晶状体结构的电学特性由与数据的拟合确定。晶状体内细胞外空间的电阻率与林格液的电阻率相当。外膜的正常电阻为5 kohm·cm²,但电容很大,为10 μF/cm²,这可能是因为它代表了几层纤维的特性。内膜具有类似于人工脂质双层的特性:它们具有高膜电阻,2.2 megohm·cm²,和低比电容,0.8 μF/cm²。然而,晶状体内有如此多的膜,以至于所有内膜上的电流总和与外表面上的电流总和相当。

相似文献

1
Electrical properties of structural components of the crystalline lens.
Biophys J. 1979 Jan;25(1):181-201. doi: 10.1016/S0006-3495(79)85284-4.
2
The lens as a nonuniform spherical syncytium.
Biophys J. 1981 Apr;34(1):61-83. doi: 10.1016/S0006-3495(81)84837-0.
3
Current-voltage relationships in the crystalline lens.
J Physiol. 1976 Nov;262(2):285-300. doi: 10.1113/jphysiol.1976.sp011596.
4
Capacitance of the surface and transverse tubular membrane of frog sartorius muscle fibers.
J Gen Physiol. 1969 Mar;53(3):265-78. doi: 10.1085/jgp.53.3.265.
5
The electrophysiology of the crystalline lens.
Curr Top Eye Res. 1979;1:37-90.
7
Spatial variations in membrane properties in the intact rat lens.
Biophys J. 1992 Aug;63(2):518-29. doi: 10.1016/S0006-3495(92)81624-7.
9
Transport properties of the lens.
Am J Physiol. 1985 Sep;249(3 Pt 1):C181-90. doi: 10.1152/ajpcell.1985.249.3.C181.
10
The localization of transport properties in the frog lens.
Biophys J. 1985 Sep;48(3):423-34. doi: 10.1016/S0006-3495(85)83798-X.

引用本文的文献

1
Insights into the biochemical and biophysical mechanisms mediating the longevity of the transparent optics of the eye lens.
J Biol Chem. 2022 Nov;298(11):102537. doi: 10.1016/j.jbc.2022.102537. Epub 2022 Sep 27.
2
A tridomain model for potassium clearance in optic nerve of Necturus.
Biophys J. 2021 Aug 3;120(15):3008-3027. doi: 10.1016/j.bpj.2021.06.020. Epub 2021 Jun 30.
3
A Bidomain Model for Lens Microcirculation.
Biophys J. 2019 Mar 19;116(6):1171-1184. doi: 10.1016/j.bpj.2019.02.007. Epub 2019 Feb 20.
5
Development of a 3D finite element model of lens microcirculation.
Biomed Eng Online. 2012 Sep 19;11:69. doi: 10.1186/1475-925X-11-69.
6
Homeostasis in the vertebrate lens: mechanisms of solute exchange.
Philos Trans R Soc Lond B Biol Sci. 2011 Apr 27;366(1568):1265-77. doi: 10.1098/rstb.2010.0299.
7
The lens circulation.
J Membr Biol. 2007 Mar;216(1):1-16. doi: 10.1007/s00232-007-9019-y. Epub 2007 Jun 14.
8
Hemichannel and junctional properties of connexin 50.
Biophys J. 2002 Apr;82(4):2016-31. doi: 10.1016/S0006-3495(02)75550-1.
9
Impedance of goat eye lens at different DC voltages.
Med Biol Eng Comput. 1998 Sep;36(5):604-7. doi: 10.1007/BF02524431.
10
Impedance of a goat eye lens.
Med Biol Eng Comput. 1997 Jul;35(4):348-53. doi: 10.1007/BF02534089.

本文引用的文献

1
Regulation of cell volume by active cation transport in high and low potassium sheep red cells.
J Gen Physiol. 1960 Sep;44(1):169-94. doi: 10.1085/jgp.44.1.169.
2
Ionic conductances of the surface and transverse tubular membranes of frog sartorius fibers.
J Gen Physiol. 1969 Mar;53(3):279-97. doi: 10.1085/jgp.53.3.279.
3
The site of the ion restricting membranes in the toad lens.
Exp Eye Res. 1969 Oct;8(4):406-12. doi: 10.1016/s0014-4835(69)80006-0.
4
Impedance of frog skeletal muscle fibers in various solutions.
J Gen Physiol. 1974 Apr;63(4):460-91. doi: 10.1085/jgp.63.4.460.
5
The movement of procion dye in the crystalline lens.
Invest Ophthalmol. 1974 Feb;13(2):147-50.
6
The potential difference of the frog lens.
Exp Eye Res. 1973 Apr;15(4):485-94. doi: 10.1016/0014-4835(73)90140-1.
7
Current-voltage relationships in the crystalline lens.
J Physiol. 1976 Nov;262(2):285-300. doi: 10.1113/jphysiol.1976.sp011596.
8
Stereological analysis of developing sarcotubular membranes.
J Ultrastruct Res. 1977 Jan;58(1):10-21. doi: 10.1016/s0022-5320(77)80003-8.
10
Distribution of the extracellular space of the amphibian lens.
Exp Eye Res. 1976 Dec;23(6):601-8. doi: 10.1016/0014-4835(76)90218-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验