Suppr超能文献

青蛙缝匠肌纤维表面和横管膜的电容

Capacitance of the surface and transverse tubular membrane of frog sartorius muscle fibers.

作者信息

Gage P W, Eisenberg R S

出版信息

J Gen Physiol. 1969 Mar;53(3):265-78. doi: 10.1085/jgp.53.3.265.

Abstract

The passive electrical properties of glycerol-treated muscle fibers, which have virtually no transverse tubules, were determined. Current was passed through one intracellular microelectrode and the time course and spatial distribution of the resulting potential displacement measured with another. The results were analyzed by using conventional cable equations. The membrane resistance of fibers without tubules was 3759 +/- 331 ohm-cm(2) and the internal resistivity 192 ohm-cm. Both these figures are essentially the same as those found in normal muscle fibers. The capacitance of the fibers without tubules is strikingly smaller than normal, being 2.24 +/- 0.14 microF/cm(2). Measurements were also made of the passive electrical properties of fibers in a Ringer solution containing 400 mM glycerol (which is used in the preparation of glycerol-treated fibers). The membrane resistance and capacitance are essentially normal, but the internal resistivity is somewhat reduced. These results show that glycerol in this concentration does not directly affect the membrane capacitance. Thus, the figure for the capacitance of glycerol-treated fibers, which agrees well with previous estimates made by different techniques, represents the capacitance of the outer membrane of the fiber. Estimates of the capacitance per unit area of the tubular membrane are made and the significance of the difference between the figures for the capacitance of the surface and tubular membrane is discussed.

摘要

对几乎没有横管的甘油处理过的肌纤维的被动电学性质进行了测定。电流通过一个细胞内微电极,并用另一个微电极测量由此产生的电位位移的时间进程和空间分布。结果采用传统的电缆方程进行分析。无横管纤维的膜电阻为3759±331欧姆·厘米²,内部电阻率为192欧姆·厘米。这两个数值与正常肌纤维中的数值基本相同。无横管纤维的电容明显小于正常情况,为2.24±0.14微法/厘米²。还对含有400毫摩尔甘油的林格溶液中的纤维(用于制备甘油处理过的纤维)的被动电学性质进行了测量。膜电阻和电容基本正常,但内部电阻率有所降低。这些结果表明,该浓度的甘油不会直接影响膜电容。因此,甘油处理过的纤维的电容数值与先前用不同技术得出的估计值非常吻合,它代表了纤维外膜的电容。对横管膜每单位面积的电容进行了估计,并讨论了表面膜和横管膜电容数值差异的意义。

相似文献

1
Capacitance of the surface and transverse tubular membrane of frog sartorius muscle fibers.
J Gen Physiol. 1969 Mar;53(3):265-78. doi: 10.1085/jgp.53.3.265.
2
Electrical properties of toad sartorius muscle fibres in summer and winter.
J Physiol. 1973 May;230(3):619-41. doi: 10.1113/jphysiol.1973.sp010208.
4
6
Ionic conductances of the surface and transverse tubular membranes of frog sartorius fibers.
J Gen Physiol. 1969 Mar;53(3):279-97. doi: 10.1085/jgp.53.3.279.
7
Frog skeletal muscle fibers: changes in electrical properties after disruption of transverse tubular system.
Science. 1967 Dec 29;158(3809):1700-1. doi: 10.1126/science.158.3809.1700.
9
The capacitance of skeletal muscle fibers in solutions of low ionic strength.
J Gen Physiol. 1972 Mar;59(3):347-59. doi: 10.1085/jgp.59.3.347.

引用本文的文献

1
Biophysical reviews top five: voltage-dependent charge movement in nerve and muscle.
Biophys Rev. 2023 Nov 10;15(6):1903-1907. doi: 10.1007/s12551-023-01165-3. eCollection 2023 Dec.
3
Caveolae in ventricular myocytes are required for stretch-dependent conduction slowing.
J Mol Cell Cardiol. 2014 Nov;76:265-74. doi: 10.1016/j.yjmcc.2014.09.014. Epub 2014 Sep 26.
4
Relationships between resting conductances, excitability, and t-system ionic homeostasis in skeletal muscle.
J Gen Physiol. 2011 Jul;138(1):95-116. doi: 10.1085/jgp.201110617. Epub 2011 Jun 13.
5
Ion channels and ion transporters of the transverse tubular system of skeletal muscle.
J Muscle Res Cell Motil. 2006;27(5-7):275-90. doi: 10.1007/s10974-006-9088-z. Epub 2006 Aug 24.
6
Detubulation abolishes membrane potential stabilization in amphibian skeletal muscle.
J Muscle Res Cell Motil. 2004;25(4-5):379-87. doi: 10.1007/s10974-004-2767-8.
7
A quantitative analysis of cell volume and resting potential determination and regulation in excitable cells.
J Physiol. 2004 Sep 1;559(Pt 2):459-78. doi: 10.1113/jphysiol.2004.065706. Epub 2004 Jul 8.
8
Separation of detubulation and vacuolation phenomena in amphibian skeletal muscle.
J Muscle Res Cell Motil. 2002;23(4):327-33. doi: 10.1023/a:1022019131898.
9
Calcium release in skeletal muscle: from K+ contractures to Ca2+ sparks.
J Muscle Res Cell Motil. 2001;22(6):485-504. doi: 10.1023/a:1015062914947.
10
Persistent tubular conduction in vacuolated amphibian skeletal muscle following osmotic shock.
J Muscle Res Cell Motil. 2001;22(5):459-66. doi: 10.1023/a:1014502302031.

本文引用的文献

1
An analysis of the end-plate potential recorded with an intracellular electrode.
J Physiol. 1951 Nov 28;115(3):320-70. doi: 10.1113/jphysiol.1951.sp004675.
2
AN ANALYSIS OF ELECTRICAL COUPLING AT SYNAPSES IN THE AVIAN CILIARY GANGLION.
J Physiol. 1964 Jun;171(3):454-75. doi: 10.1113/jphysiol.1964.sp007390.
3
LINEAR ELECTRICAL PROPERTIES OF STRIATED MUSCLE FIBRES OBSERVED WITH INTRACELLULAR ELECTRODES.
Proc R Soc Lond B Biol Sci. 1964 Apr 14;160:69-123. doi: 10.1098/rspb.1964.0030.
4
AN ANALYSIS OF THE TRANSVERSE ELECTRICAL IMPEDANCE OF STRIATED MUSCLE.
Proc R Soc Lond B Biol Sci. 1964 Mar 17;159:606-51. doi: 10.1098/rspb.1964.0023.
5
Frog skeletal muscle fibers: changes in electrical properties after disruption of transverse tubular system.
Science. 1967 Dec 29;158(3809):1700-1. doi: 10.1126/science.158.3809.1700.
7
The sarcoplasmic reticulum and transverse tubules of the frog's sartorius.
J Cell Biol. 1965 Jun;25(3):Suppl:209-31. doi: 10.1083/jcb.25.3.209.
9
Predicted delays in the activation of the contractile system.
Biophys J. 1968 May;8(5):608-25. doi: 10.1016/S0006-3495(68)86511-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验