Hematian Shabnam, Kenkel Isabell, Shubina Tatyana E, Dürr Maximilian, Liu Jeffrey J, Siegler Maxime A, Ivanovic-Burmazovic Ivana, Karlin Kenneth D
†Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21211, United States.
‡Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, Erlangen 91058, Germany.
J Am Chem Soc. 2015 May 27;137(20):6602-15. doi: 10.1021/jacs.5b02174. Epub 2015 May 14.
While nitric oxide (NO, nitrogen monoxide) is a critically important signaling agent, its cellular concentrations must be tightly controlled, generally through its oxidative conversion to nitrite (NO2(-)) where it is held in reserve to be reconverted as needed. In part, this reaction is mediated by the binuclear heme a3/CuB active site of cytochrome c oxidase. In this report, the oxidation of NO(g) to nitrite is shown to occur efficiently in new synthetic μ-oxo heme-Fe(III)-O-Cu(II)(L) constructs (L being a tridentate or tetradentate pyridyl/alkylamino ligand), and spectroscopic and kinetic investigations provide detailed mechanistic insights. Two new X-ray structures of μ-oxo complexes have been determined and compared to literature analogs. All μ-oxo complexes react with 2 mol equiv NO(g) to give 1:1 mixtures of discrete (L)Cu(II)(NO2(-)) plus ferrous heme-nitrosyl compounds; when the first NO(g) equiv reduces the heme center and itself is oxidized to nitrite, the second equiv of NO(g) traps the ferrous heme thus formed. For one μ-oxo heme-Fe(III)-O-Cu(II)(L) compound, the reaction with NO(g) reveals an intermediate species ("intermediate"), formally a bis-NO adduct, (NO)(porphyrinate)Fe(II)-(NO2(-))-Cu(II)(L) (λmax = 433 nm), confirmed by cryo-spray ionization mass spectrometry and EPR spectroscopy, along with the observation that cooling a 1:1 mixture of (L)Cu(II)(NO2(-)) and heme-Fe(II)(NO) to -125 °C leads to association and generation of the key 433 nm UV-vis feature. Kinetic-thermodynamic parameters obtained from low-temperature stopped-flow measurements are in excellent agreement with DFT calculations carried out which describe the sequential addition of NO(g) to the μ-oxo complex.
虽然一氧化氮(NO,又称氮 monoxide)是一种至关重要的信号传导剂,但其细胞内浓度必须受到严格控制,通常是通过将其氧化转化为亚硝酸盐(NO2(-))来实现,亚硝酸盐会储备起来并根据需要再转化回一氧化氮。部分情况下,该反应由细胞色素c氧化酶的双核血红素a3/CuB活性位点介导。在本报告中,新合成的μ-氧代血红素-Fe(III)-O-Cu(II)(L)构建体(L为三齿或四齿吡啶基/烷基氨基配体)中,NO(g)氧化为亚硝酸盐的反应被证明能高效发生,光谱和动力学研究提供了详细的机理见解。已确定了两种新的μ-氧代配合物的X射线结构,并与文献中的类似物进行了比较。所有μ-氧代配合物都与2摩尔当量的NO(g)反应,生成离散的(L)Cu(II)(NO2(-))与亚铁血红素亚硝基化合物的1:1混合物;当第一个当量的NO(g)还原血红素中心并自身被氧化为亚硝酸盐时,第二个当量的NO(g)捕获由此形成的亚铁血红素。对于一种μ-氧代血红素-Fe(III)-O-Cu(II)(L)化合物,其与NO(g)的反应揭示了一种中间物种(“中间体”),形式上是一种双-NO加合物,(NO)(卟啉)Fe(II)-(NO2(-))-Cu(II)(L)(λmax = 433 nm),通过低温喷雾电离质谱和电子顺磁共振光谱得到证实,同时观察到将(L)Cu(II)(NO2(-))和血红素-Fe(II)(NO)的1:1混合物冷却至-125°C会导致缔合并产生关键的433 nm紫外可见特征峰。从低温停止流动测量获得的动力学-热力学参数与进行的密度泛函理论计算结果非常吻合,该计算描述了NO(g)依次添加到μ-氧代配合物中的过程。