Fernández-Crespo Emma, Scalschi Loredana, Llorens Eugenio, García-Agustín Pilar, Camañes Gemma
Grupo de Bioquímica y Biotecnología, Área de Fisiología Vegetal, Departamento de Ciencias Agrarias y del Medio Natural, ESTCE. Universitat Jaume I, 12071 Castellón, Spain.
Grupo de Bioquímica y Biotecnología, Área de Fisiología Vegetal, Departamento de Ciencias Agrarias y del Medio Natural, ESTCE. Universitat Jaume I, 12071 Castellón, Spain
J Exp Bot. 2015 Nov;66(21):6777-90. doi: 10.1093/jxb/erv382. Epub 2015 Aug 5.
NH4 (+) nutrition provokes mild toxicity by enhancing H2O2 accumulation, which acts as a signal activating systemic acquired acclimation (SAA). Until now, induced resistance mechanisms in response to an abiotic stimulus and related to SAA were only reported for exposure to a subsequent abiotic stress. Herein, the first evidence is provided that this acclimation to an abiotic stimulus induces resistance to later pathogen infection, since NH4 (+) nutrition (N-NH4 (+))-induced resistance (NH4 (+)-IR) against Pseudomonas syringae pv tomato DC3000 (Pst) in tomato plants was demonstrated. N-NH4 (+) plants displayed basal H2O2, abscisic acid (ABA), and putrescine (Put) accumulation. H2O2 accumulation acted as a signal to induce ABA-dependent signalling pathways required to prevent NH4 (+) toxicity. This acclimatory event provoked an increase in resistance against later pathogen infection. N-NH4 (+) plants displayed basal stomatal closure produced by H2O2 derived from enhanced CuAO and rboh1 activity that may reduce the entry of bacteria into the mesophyll, diminishing the disease symptoms as well as strongly inducing the oxidative burst upon Pst infection, favouring NH4 (+)-IR. Experiments with inhibitors of Put accumulation and the ABA-deficient mutant flacca demonstrated that Put and ABA downstream signalling pathways are required to complete NH4 (+)-IR. The metabolic profile revealed that infected N-NH4 (+) plants showed greater ferulic acid accumulation compared with control plants. Although classical salicylic acid (SA)-dependent responses against biotrophic pathogens were not found, the important role of Put in the resistance of tomato against Pst was demonstrated. Moreover, this work revealed the cross-talk between abiotic stress acclimation (NH4 (+) nutrition) and resistance to subsequent Pst infection.
铵(NH₄⁺)营养通过增强过氧化氢(H₂O₂)积累引发轻度毒性,H₂O₂作为一种信号激活系统获得性适应(SAA)。到目前为止,仅报道了对后续非生物胁迫暴露时响应非生物刺激并与SAA相关的诱导抗性机制。在此,首次提供证据表明这种对非生物刺激的适应诱导了对后期病原体感染的抗性,因为已证明番茄植株中铵(NH₄⁺)营养(N-NH₄⁺)诱导的对丁香假单胞菌番茄致病变种DC3000(Pst)的抗性(NH₄⁺-IR)。N-NH₄⁺植株表现出基础H₂O₂、脱落酸(ABA)和腐胺(Put)积累。H₂O₂积累作为一种信号,诱导防止NH₄⁺毒性所需的ABA依赖信号通路。这种适应性事件引发了对后期病原体感染抗性的增加。N-NH₄⁺植株表现出由增强的铜胺氧化酶(CuAO)和呼吸爆发氧化酶同源物1(rboh1)活性产生的基础气孔关闭,这可能减少细菌进入叶肉,减轻病害症状,并在Pst感染时强烈诱导氧化爆发,有利于NH₄⁺-IR。用Put积累抑制剂和ABA缺陷突变体flacca进行的实验表明,Put和ABA下游信号通路是完成NH₄⁺-IR所必需的。代谢谱显示,与对照植株相比,受感染的N-NH₄⁺植株表现出更高的阿魏酸积累。虽然未发现针对活体营养型病原体的经典水杨酸(SA)依赖反应,但证明了Put在番茄对Pst抗性中的重要作用。此外,这项工作揭示了非生物胁迫适应(NH₄⁺营养)与对后续Pst感染抗性之间的相互作用。