Shimizu Katsuhiko, Amano Taro, Bari Md Rezaul, Weaver James C, Arima Jiro, Mori Nobuhiro
Division of Regional Contribution and Lifelong Learning, Organization for Regional Industrial Academic Cooperation, Tottori University, Tottori 680-8550, Japan;
Department of Agricultural, Biological and Environmental Science, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan;
Proc Natl Acad Sci U S A. 2015 Sep 15;112(37):11449-54. doi: 10.1073/pnas.1506968112. Epub 2015 Aug 10.
The hexactinellids are a diverse group of predominantly deep sea sponges that synthesize elaborate fibrous skeletal systems of amorphous hydrated silica. As a representative example, members of the genus Euplectella have proved to be useful model systems for investigating structure-function relationships in these hierarchically ordered siliceous network-like composites. Despite recent advances in understanding the mechanistic origins of damage tolerance in these complex skeletal systems, the details of their synthesis have remained largely unexplored. Here, we describe a previously unidentified protein, named "glassin," the main constituent in the water-soluble fraction of the demineralized skeletal elements of Euplectella. When combined with silicic acid solutions, glassin rapidly accelerates silica polycondensation over a pH range of 6-8. Glassin is characterized by high histidine content, and cDNA sequence analysis reveals that glassin shares no significant similarity with any other known proteins. The deduced amino acid sequence reveals that glassin consists of two similar histidine-rich domains and a connecting domain. Each of the histidine-rich domains is composed of three segments: an amino-terminal histidine and aspartic acid-rich sequence, a proline-rich sequence in the middle, and a histidine and threonine-rich sequence at the carboxyl terminus. Histidine always forms HX or HHX repeats, in which most of X positions are occupied by glycine, aspartic acid, or threonine. Recombinant glassin reproduces the silica precipitation activity observed in the native proteins. The highly modular composition of glassin, composed of imidazole, acidic, and hydroxyl residues, favors silica polycondensation and provides insights into the molecular mechanisms of skeletal formation in hexactinellid sponges.
六放海绵纲是一类多样的主要生活在深海的海绵动物,它们能合成由无定形水合二氧化硅构成的精巧纤维状骨骼系统。作为一个典型例子,偕老同穴属的成员已被证明是研究这些层次有序的硅质网络状复合材料结构 - 功能关系的有用模型系统。尽管最近在理解这些复杂骨骼系统中损伤耐受性的机制起源方面取得了进展,但其合成细节在很大程度上仍未被探索。在这里,我们描述了一种先前未被鉴定的蛋白质,名为“玻璃蛋白”,它是偕老同穴去矿化骨骼元素水溶性部分的主要成分。当与硅酸溶液混合时,玻璃蛋白在pH值6 - 8的范围内能迅速加速二氧化硅的缩聚反应。玻璃蛋白的特点是组氨酸含量高,cDNA序列分析表明玻璃蛋白与任何其他已知蛋白质没有显著相似性。推导的氨基酸序列显示,玻璃蛋白由两个相似的富含组氨酸的结构域和一个连接结构域组成。每个富含组氨酸的结构域由三个部分组成:一个氨基末端富含组氨酸和天冬氨酸的序列、中间一个富含脯氨酸的序列以及羧基末端一个富含组氨酸和苏氨酸的序列。组氨酸总是形成HX或HHX重复序列,其中大多数X位置被甘氨酸、天冬氨酸或苏氨酸占据。重组玻璃蛋白重现了在天然蛋白质中观察到的二氧化硅沉淀活性。玻璃蛋白由咪唑、酸性和羟基残基组成的高度模块化组成有利于二氧化硅的缩聚反应,并为六放海绵纲海绵骨骼形成的分子机制提供了见解。