Suppr超能文献

应用去混合方法于基因表达数据以推断肿瘤进化关系。

Applying unmixing to gene expression data for tumor phylogeny inference.

机构信息

Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA USA.

出版信息

BMC Bioinformatics. 2010 Jan 20;11:42. doi: 10.1186/1471-2105-11-42.

Abstract

BACKGROUND

While in principle a seemingly infinite variety of combinations of mutations could result in tumor development, in practice it appears that most human cancers fall into a relatively small number of "sub-types," each characterized a roughly equivalent sequence of mutations by which it progresses in different patients. There is currently great interest in identifying the common sub-types and applying them to the development of diagnostics or therapeutics. Phylogenetic methods have shown great promise for inferring common patterns of tumor progression, but suffer from limits of the technologies available for assaying differences between and within tumors. One approach to tumor phylogenetics uses differences between single cells within tumors, gaining valuable information about intra-tumor heterogeneity but allowing only a few markers per cell. An alternative approach uses tissue-wide measures of whole tumors to provide a detailed picture of averaged tumor state but at the cost of losing information about intra-tumor heterogeneity.

RESULTS

The present work applies "unmixing" methods, which separate complex data sets into combinations of simpler components, to attempt to gain advantages of both tissue-wide and single-cell approaches to cancer phylogenetics. We develop an unmixing method to infer recurring cell states from microarray measurements of tumor populations and use the inferred mixtures of states in individual tumors to identify possible evolutionary relationships among tumor cells. Validation on simulated data shows the method can accurately separate small numbers of cell states and infer phylogenetic relationships among them. Application to a lung cancer dataset shows that the method can identify cell states corresponding to common lung tumor types and suggest possible evolutionary relationships among them that show good correspondence with our current understanding of lung tumor development.

CONCLUSIONS

Unmixing methods provide a way to make use of both intra-tumor heterogeneity and large probe sets for tumor phylogeny inference, establishing a new avenue towards the construction of detailed, accurate portraits of common tumor sub-types and the mechanisms by which they develop. These reconstructions are likely to have future value in discovering and diagnosing novel cancer sub-types and in identifying targets for therapeutic development.

摘要

背景

虽然原则上肿瘤的发展可能涉及到无穷无尽的突变组合,但实际上,大多数人类癌症似乎都属于相对较少的“亚型”,每个亚型的特征是大致相当的一系列突变,这些突变在不同的患者中导致肿瘤的进展。目前,人们对识别常见亚型并将其应用于诊断或治疗的开发非常感兴趣。系统发育方法在推断肿瘤进展的常见模式方面显示出巨大的潜力,但受到可用于检测肿瘤内和肿瘤间差异的技术的限制。一种肿瘤系统发育的方法使用肿瘤内单个细胞之间的差异,从而获得有关肿瘤内异质性的宝贵信息,但每个细胞只能允许使用少数标记物。另一种方法使用整个肿瘤的组织范围测量值来提供肿瘤平均状态的详细图片,但以损失肿瘤内异质性的信息为代价。

结果

本研究应用“解混”方法将复杂数据集分解为简单成分的组合,以尝试结合肿瘤系统发育的组织范围和单细胞方法的优势。我们开发了一种解混方法,从肿瘤群体的微阵列测量中推断出反复出现的细胞状态,并使用个体肿瘤中推断出的状态混合物来识别肿瘤细胞之间可能的进化关系。在模拟数据上的验证表明,该方法可以准确地分离少数细胞状态并推断出它们之间的系统发育关系。在肺癌数据集上的应用表明,该方法可以识别出对应于常见肺癌类型的细胞状态,并暗示它们之间可能的进化关系,这与我们目前对肺癌肿瘤发生的理解具有很好的一致性。

结论

解混方法为利用肿瘤系统发育推断中的肿瘤内异质性和大型探针集提供了一种方法,为构建常见肿瘤亚型的详细、准确图像以及它们的发展机制开辟了新的途径。这些重建在发现和诊断新型癌症亚型以及确定治疗开发的靶点方面可能具有未来价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c685/2823708/d3e06a33562b/1471-2105-11-42-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验