Siefermann Katrin R, Pemmaraju Chaitanya D, Neppl Stefan, Shavorskiy Andrey, Cordones Amy A, Vura-Weis Josh, Slaughter Daniel S, Sturm Felix P, Weise Fabian, Bluhm Hendrik, Strader Matthew L, Cho Hana, Lin Ming-Fu, Bacellar Camila, Khurmi Champak, Guo Jinghua, Coslovich Giacomo, Robinson Joseph S, Kaindl Robert A, Schoenlein Robert W, Belkacem Ali, Neumark Daniel M, Leone Stephen R, Nordlund Dennis, Ogasawara Hirohito, Krupin Oleg, Turner Joshua J, Schlotter William F, Holmes Michael R, Messerschmidt Marc, Minitti Michael P, Gul Sheraz, Zhang Jin Z, Huse Nils, Prendergast David, Gessner Oliver
†Ultrafast X-ray Science Laboratory, Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
‡The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
J Phys Chem Lett. 2014 Aug 7;5(15):2753-9. doi: 10.1021/jz501264x. Epub 2014 Jul 29.
Understanding interfacial charge-transfer processes on the atomic level is crucial to support the rational design of energy-challenge relevant systems such as solar cells, batteries, and photocatalysts. A femtosecond time-resolved core-level photoelectron spectroscopy study is performed that probes the electronic structure of the interface between ruthenium-based N3 dye molecules and ZnO nanocrystals within the first picosecond after photoexcitation and from the unique perspective of the Ru reporter atom at the center of the dye. A transient chemical shift of the Ru 3d inner-shell photolines by (2.3 ± 0.2) eV to higher binding energies is observed 500 fs after photoexcitation of the dye. The experimental results are interpreted with the aid of ab initio calculations using constrained density functional theory. Strong indications for the formation of an interfacial charge-transfer state are presented, providing direct insight into a transient electronic configuration that may limit the efficiency of photoinduced free charge-carrier generation.
在原子层面理解界面电荷转移过程对于支持合理设计与能源挑战相关的系统(如太阳能电池、电池和光催化剂)至关重要。进行了一项飞秒时间分辨芯能级光电子能谱研究,该研究在光激发后的第一个皮秒内,从染料中心的Ru报告原子这一独特视角探测钌基N3染料分子与ZnO纳米晶体之间界面的电子结构。在染料光激发500飞秒后,观察到Ru 3d内壳层光电子线有(2.3±0.2)电子伏特向更高结合能的瞬态化学位移。借助使用约束密度泛函理论的从头算计算对实验结果进行了解释。给出了形成界面电荷转移态的有力迹象,为可能限制光致自由电荷载流子产生效率的瞬态电子构型提供了直接见解。