Suppr超能文献

基于二元性状边际回归模型的罕见变异集序列核关联分析

Sequence Kernel Association Analysis of Rare Variant Set Based on the Marginal Regression Model for Binary Traits.

作者信息

Wu Baolin, Pankow James S, Guan Weihua

机构信息

Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, United States of America.

Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota, United States of America.

出版信息

Genet Epidemiol. 2015 Sep;39(6):399-405. doi: 10.1002/gepi.21913.

Abstract

Recent sequencing efforts have focused on exploring the influence of rare variants on the complex diseases. Gene level based tests by aggregating information across rare variants within a gene have become attractive to enrich the rare variant association signal. Among them, the sequence kernel association test (SKAT) has proved to be a very powerful method for jointly testing multiple rare variants within a gene. In this article, we explore an alternative SKAT. We propose to use the univariate likelihood ratio statistics from the marginal model for individual variants as input into the kernel association test. We show how to compute its significance P-value efficiently based on the asymptotic chi-square mixture distribution. We demonstrate through extensive numerical studies that the proposed method has competitive performance. Its usefulness is further illustrated with application to associations between rare exonic variants and type 2 diabetes (T2D) in the Atherosclerosis Risk in Communities (ARIC) study. We identified an exome-wide significant rare variant set in the gene ZZZ3 worthy of further investigations.

摘要

最近的测序工作集中在探索罕见变异对复杂疾病的影响。通过整合基因内多个罕见变异的信息进行基于基因水平的检测,已成为增强罕见变异关联信号的有效手段。其中,序列核关联检验(SKAT)已被证明是一种用于联合检测基因内多个罕见变异的强大方法。在本文中,我们探索了一种替代的SKAT方法。我们建议将单个变异边际模型的单变量似然比统计量作为核关联检验的输入。我们展示了如何基于渐近卡方混合分布有效地计算其显著性P值。通过大量数值研究,我们证明了所提出的方法具有竞争力。在社区动脉粥样硬化风险(ARIC)研究中,将其应用于罕见外显子变异与2型糖尿病(T2D)之间的关联,进一步说明了其有效性。我们在ZZZ3基因中鉴定出一组全外显子显著的罕见变异,值得进一步研究。

相似文献

2
Sequence Kernel Association Test of Multiple Continuous Phenotypes.多个连续表型的序列核关联检验
Genet Epidemiol. 2016 Feb;40(2):91-100. doi: 10.1002/gepi.21945. Epub 2016 Jan 18.
7

引用本文的文献

4
A Powerful Variant-Set Association Test Based on Chi-Square Distribution.基于卡方分布的强大变异集关联测试。
Genetics. 2017 Nov;207(3):903-910. doi: 10.1534/genetics.117.300287. Epub 2017 Sep 14.
7
Sequence Kernel Association Test of Multiple Continuous Phenotypes.多个连续表型的序列核关联检验
Genet Epidemiol. 2016 Feb;40(2):91-100. doi: 10.1002/gepi.21945. Epub 2016 Jan 18.

本文引用的文献

3
Sequence kernel association test for survival traits.序列核关联检验用于生存特征分析。
Genet Epidemiol. 2014 Apr;38(3):191-7. doi: 10.1002/gepi.21791. Epub 2014 Jan 26.
10
Optimal tests for rare variant effects in sequencing association studies.测序关联研究中罕见变异效应的最优检验。
Biostatistics. 2012 Sep;13(4):762-75. doi: 10.1093/biostatistics/kxs014. Epub 2012 Jun 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验