Suppr超能文献

FastSKAT:针对大量标记集的序列核关联检验。

FastSKAT: Sequence kernel association tests for very large sets of markers.

作者信息

Lumley Thomas, Brody Jennifer, Peloso Gina, Morrison Alanna, Rice Kenneth

机构信息

Department of Statistics, University of Auckland, Auckland, New Zealand.

Cardiovascular Health Research Unit, University of Washington, Seattle, Washington.

出版信息

Genet Epidemiol. 2018 Sep;42(6):516-527. doi: 10.1002/gepi.22136. Epub 2018 Jun 22.

Abstract

The sequence kernel association test (SKAT) is widely used to test for associations between a phenotype and a set of genetic variants that are usually rare. Evaluating tail probabilities or quantiles of the null distribution for SKAT requires computing the eigenvalues of a matrix related to the genotype covariance between markers. Extracting the full set of eigenvalues of this matrix (an matrix, for n subjects) has computational complexity proportional to n . As SKAT is often used when , this step becomes a major bottleneck in its use in practice. We therefore propose fastSKAT, a new computationally inexpensive but accurate approximations to the tail probabilities, in which the k largest eigenvalues of a weighted genotype covariance matrix or the largest singular values of a weighted genotype matrix are extracted, and a single term based on the Satterthwaite approximation is used for the remaining eigenvalues. While the method is not particularly sensitive to the choice of k, we also describe how to choose its value, and show how fastSKAT can automatically alert users to the rare cases where the choice may affect results. As well as providing faster implementation of SKAT, the new method also enables entirely new applications of SKAT that were not possible before; we give examples grouping variants by topologically associating domains, and comparing chromosome-wide association by class of histone marker.

摘要

序列核关联检验(SKAT)被广泛用于检测一种表型与一组通常较为罕见的基因变异之间的关联。评估SKAT的零分布的尾部概率或分位数需要计算与标记之间的基因型协方差相关的矩阵的特征值。提取该矩阵(对于n个受试者而言是一个(n\times n)矩阵)的完整特征值集的计算复杂度与(n^3)成正比。由于SKAT通常在(n)较大时使用,这一步骤在实际应用中成为其主要瓶颈。因此,我们提出了fastSKAT,这是一种计算成本低但对尾部概率有准确近似值的新方法,其中提取加权基因型协方差矩阵的k个最大特征值或加权基因型矩阵的最大奇异值,并对其余特征值使用基于萨特思韦特近似的单个项。虽然该方法对k的选择不是特别敏感,但我们也描述了如何选择其值,并展示了fastSKAT如何能自动提醒用户注意那些k的选择可能影响结果的罕见情况。除了提供SKAT的更快实现方式外,新方法还实现了SKAT以前无法实现的全新应用;我们给出了按拓扑关联域对变异进行分组以及按组蛋白标记类别比较全染色体范围关联的示例。

相似文献

5
Genotype Value Decomposition: Simple Methods for the Computation of Kernel Statistics.基因型值分解:内核统计计算的简单方法
Adv Genet (Hoboken). 2022 Apr 5;3(3):2100066. doi: 10.1002/ggn2.202100066. eCollection 2022 Sep.
6
Robust kernel association testing (RobKAT).稳健核关联检验(RobKAT)。
Genet Epidemiol. 2020 Apr;44(3):272-282. doi: 10.1002/gepi.22280. Epub 2020 Jan 14.
10
Optimal tests for rare variant effects in sequencing association studies.测序关联研究中罕见变异效应的最优检验。
Biostatistics. 2012 Sep;13(4):762-75. doi: 10.1093/biostatistics/kxs014. Epub 2012 Jun 14.

引用本文的文献

1
Genetic modifiers of body mass index in individuals with cystic fibrosis.囊性纤维化患者体重指数的遗传修饰物。
Am J Hum Genet. 2024 Oct 3;111(10):2203-2218. doi: 10.1016/j.ajhg.2024.08.004. Epub 2024 Sep 10.

本文引用的文献

9
Sequence kernel association test for survival traits.序列核关联检验用于生存特征分析。
Genet Epidemiol. 2014 Apr;38(3):191-7. doi: 10.1002/gepi.21791. Epub 2014 Jan 26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验