Suppr超能文献

性别特异性效应在何时才是真正的性别特异性?

When are sex-specific effects really sex-specific?

作者信息

Chin E H, Christians J K

机构信息

Department of Biological Sciences,Simon Fraser University,Burnaby,Canada.

出版信息

J Dev Orig Health Dis. 2015 Oct;6(5):438-42. doi: 10.1017/S2040174415001348. Epub 2015 Aug 18.

Abstract

We examined developmental programming studies that reported sex-specific effects published between 2012 and 2014, and examined whether the authors reported a statistical approach to explicitly test whether the effect of treatment differed between the sexes, for example, a sex by treatment interaction term. Less than half of the studies that reported sex-specific effects described explicitly testing whether effects were indeed sex-specific; in most cases, an effect was considered 'sex-specific' if it was significant in one sex but not the other. This is not a robust approach, since significance in one sex and lack of significance in the other sex does not imply a significant difference between the sexes. However, sample size often limits statistical power to detect interactions. We suggest that if the effect is significant in only one sex, but the interaction term is not significant, alternative solutions would be to present the confidence intervals for the effect size for each sex, or using Bayesian approaches to calculate the probability that the effect sizes differ between the sexes. We present a simple example of a Bayesian analysis to illustrate that this approach is reasonably easy to implement and interpret.

摘要

我们研究了2012年至2014年间发表的报告性别特异性效应的发育编程研究,并考察了作者是否报告了一种统计方法来明确检验治疗效果在性别之间是否存在差异,例如,一个性别与治疗的交互项。报告了性别特异性效应的研究中,不到一半明确描述了检验效应是否确实具有性别特异性;在大多数情况下,如果一种效应在一种性别中显著而在另一种性别中不显著,那么该效应就被认为是“性别特异性的”。这不是一种可靠的方法,因为在一种性别中显著而在另一种性别中不显著并不意味着性别之间存在显著差异。然而,样本量往往会限制检测交互作用的统计效力。我们建议,如果效应仅在一种性别中显著,但交互项不显著,那么替代解决方案可以是给出每种性别的效应大小的置信区间,或者使用贝叶斯方法来计算效应大小在性别之间存在差异的概率。我们给出一个贝叶斯分析的简单例子来说明这种方法相当容易实施和解释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验