Cuskin Fiona, Baslé Arnaud, Ladevèze Simon, Day Alison M, Gilbert Harry J, Davies Gideon J, Potocki-Véronèse Gabrielle, Lowe Elisabeth C
From the Institute for Cell and Molecular Biosciences, Medical School Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom.
Université de Toulouse, INSA/UPS/INP, LISBP, F-31077 Toulouse, France, CNRS, UMR5504 and INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France, and.
J Biol Chem. 2015 Oct 9;290(41):25023-33. doi: 10.1074/jbc.M115.681460. Epub 2015 Aug 18.
The depolymerization of complex glycans is an important biological process that is of considerable interest to environmentally relevant industries. β-Mannose is a major component of plant structural polysaccharides and eukaryotic N-glycans. These linkages are primarily cleaved by glycoside hydrolases, although recently, a family of glycoside phosphorylases, GH130, have also been shown to target β-1,2- and β-1,4-mannosidic linkages. In these phosphorylases, bond cleavage was mediated by a single displacement reaction in which phosphate functions as the catalytic nucleophile. A cohort of GH130 enzymes, however, lack the conserved basic residues that bind the phosphate nucleophile, and it was proposed that these enzymes function as glycoside hydrolases. Here we show that two Bacteroides enzymes, BT3780 and BACOVA_03624, which lack the phosphate binding residues, are indeed β-mannosidases that hydrolyze β-1,2-mannosidic linkages through an inverting mechanism. Because the genes encoding these enzymes are located in genetic loci that orchestrate the depolymerization of yeast α-mannans, it is likely that the two enzymes target the β-1,2-mannose residues that cap the glycan produced by Candida albicans. The crystal structure of BT3780 in complex with mannose bound in the -1 and +1 subsites showed that a pair of glutamates, Glu(227) and Glu(268), hydrogen bond to O1 of α-mannose, and either of these residues may function as the catalytic base. The candidate catalytic acid and the other residues that interact with the active site mannose are conserved in both GH130 mannoside phosphorylases and β-1,2-mannosidases. Functional phylogeny identified a conserved lysine, Lys(199) in BT3780, as a key specificity determinant for β-1,2-mannosidic linkages.
复杂聚糖的解聚是一个重要的生物学过程,对与环境相关的产业具有相当大的吸引力。β-甘露糖是植物结构多糖和真核生物N-聚糖的主要成分。这些连接主要由糖苷水解酶切割,尽管最近,一类糖苷磷酸化酶GH130也被证明可作用于β-1,2-和β-1,4-甘露糖苷键。在这些磷酸化酶中,键的断裂是由单取代反应介导的,其中磷酸盐作为催化亲核试剂。然而,一组GH130酶缺乏结合磷酸盐亲核试剂的保守碱性残基,因此有人提出这些酶起糖苷水解酶的作用。在这里,我们表明两种拟杆菌属酶BT3780和BACOVA_03624,它们缺乏磷酸盐结合残基,实际上是β-甘露糖苷酶,通过一种转化机制水解β-1,2-甘露糖苷键。由于编码这些酶的基因位于协调酵母α-甘露聚糖解聚的基因座中,这两种酶很可能作用于覆盖白色念珠菌产生的聚糖的β-1,2-甘露糖残基。BT3780与结合在-1和+1亚位点的甘露糖形成复合物的晶体结构表明,一对谷氨酸,即Glu(227)和Glu(268),与α-甘露糖的O1形成氢键,这些残基中的任何一个都可能作为催化碱。候选催化酸和其他与活性位点甘露糖相互作用的残基在GH130甘露糖苷磷酸化酶和β-1,2-甘露糖苷酶中都是保守的。功能系统发育分析确定BT3780中一个保守的赖氨酸Lys(199)是β-1,2-甘露糖苷键的关键特异性决定因素。