Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403-1st Avenue South, Lethbridge, Alberta, T1J 4B1, Canada.
Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada.
Microbiome. 2021 Jan 22;9(1):23. doi: 10.1186/s40168-020-00975-x.
Gut microbiomes, such as the microbial community that colonizes the rumen, have vast catabolic potential and play a vital role in host health and nutrition. By expanding our understanding of metabolic pathways in these ecosystems, we will garner foundational information for manipulating microbiome structure and function to influence host physiology. Currently, our knowledge of metabolic pathways relies heavily on inferences derived from metagenomics or culturing bacteria in vitro. However, novel approaches targeting specific cell physiologies can illuminate the functional potential encoded within microbial (meta)genomes to provide accurate assessments of metabolic abilities. Using fluorescently labeled polysaccharides, we visualized carbohydrate metabolism performed by single bacterial cells in a complex rumen sample, enabling a rapid assessment of their metabolic phenotype. Specifically, we identified bovine-adapted strains of Bacteroides thetaiotaomicron that metabolized yeast mannan in the rumen microbiome ex vivo and discerned the mechanistic differences between two distinct carbohydrate foraging behaviors, referred to as "medium grower" and "high grower." Using comparative whole-genome sequencing, RNA-seq, and carbohydrate-active enzyme fingerprinting, we could elucidate the strain-level variability in carbohydrate utilization systems of the two foraging behaviors to help predict individual strategies of nutrient acquisition. Here, we present a multi-faceted study using complimentary next-generation physiology and "omics" approaches to characterize microbial adaptation to a prebiotic in the rumen ecosystem. Video abstract.
肠道微生物组,如定植在瘤胃中的微生物群落,具有巨大的分解代谢潜力,在宿主健康和营养方面发挥着重要作用。通过扩展我们对这些生态系统中代谢途径的理解,我们将获得基础信息,以操纵微生物组的结构和功能,从而影响宿主生理学。目前,我们对代谢途径的知识主要依赖于基于宏基因组学的推断或体外培养细菌。然而,针对特定细胞生理学的新方法可以阐明微生物(宏)基因组中编码的功能潜力,从而对代谢能力进行准确评估。我们使用荧光标记的多糖,可视化了单个细菌细胞在复杂瘤胃样本中进行的碳水化合物代谢,从而可以快速评估其代谢表型。具体来说,我们鉴定出了在瘤胃微生物组中能够代谢酵母甘露聚糖的牛适应型拟杆菌(Bacteroides thetaiotaomicron)菌株,并发现了两种不同碳水化合物觅食行为(“中生长者”和“高生长者”)之间的机制差异。通过比较全基因组测序、RNA-seq 和碳水化合物活性酶指纹分析,我们可以阐明两种觅食行为中碳水化合物利用系统的菌株水平变异性,以帮助预测营养获取的个体策略。在这里,我们提出了一项多方面的研究,使用互补的下一代生理学和“组学”方法来描述微生物对瘤胃生态系统中益生元的适应性。视频摘要。