Suppr超能文献

利用高通量基因组学预测对组蛋白去乙酰化酶抑制剂的反应

Predicting Response to Histone Deacetylase Inhibitors Using High-Throughput Genomics.

作者信息

Geeleher Paul, Loboda Andrey, Lenkala Divya, Wang Fan, LaCroix Bonnie, Karovic Sanja, Wang Jacqueline, Nebozhyn Michael, Chisamore Michael, Hardwick James, Maitland Michael L, Huang R Stephanie

机构信息

Department of Medicine (PG, DL, FW, BL, SK, JW, MLM, RSH), Committee on Clinical Pharmacology and Pharmacogenomics (MLM, RSH), and the Comprehensive Cancer Center (MLM, RSH), University of Chicago, Chicago, IL; Oncology Clinical Research, Merck Research Laboratories, North Wales, PA (AL, MN, MC, JH).

出版信息

J Natl Cancer Inst. 2015 Aug 21;107(11). doi: 10.1093/jnci/djv247. Print 2015 Nov.

Abstract

BACKGROUND

Many disparate biomarkers have been proposed as predictors of response to histone deacetylase inhibitors (HDI); however, all have failed when applied clinically. Rather than this being entirely an issue of reproducibility, response to the HDI vorinostat may be determined by the additive effect of multiple molecular factors, many of which have previously been demonstrated.

METHODS

We conducted a large-scale gene expression analysis using the Cancer Genome Project for discovery and generated another large independent cancer cell line dataset across different cancers for validation. We compared different approaches in terms of how accurately vorinostat response can be predicted on an independent out-of-batch set of samples and applied the polygenic marker prediction principles in a clinical trial.

RESULTS

Using machine learning, the small effects that aggregate, resulting in sensitivity or resistance, can be recovered from gene expression data in a large panel of cancer cell lines.This approach can predict vorinostat response accurately, whereas single gene or pathway markers cannot. Our analyses recapitulated and contextualized many previous findings and suggest an important role for processes such as chromatin remodeling, autophagy, and apoptosis. As a proof of concept, we also discovered a novel causative role for CHD4, a helicase involved in the histone deacetylase complex that is associated with poor clinical outcome. As a clinical validation, we demonstrated that a common dose-limiting toxicity of vorinostat, thrombocytopenia, can be predicted (r = 0.55, P = .004) several days before it is detected clinically.

CONCLUSION

Our work suggests a paradigm shift from single-gene/pathway evaluation to simultaneously evaluating multiple independent high-throughput gene expression datasets, which can be easily extended to other investigational compounds where similar issues are hampering clinical adoption.

摘要

背景

许多不同的生物标志物已被提出作为组蛋白去乙酰化酶抑制剂(HDI)反应的预测指标;然而,所有这些指标在临床应用时均告失败。对伏立诺他(vorinostat)的反应并非完全是可重复性问题,而可能由多种分子因素的累加效应决定,其中许多因素此前已得到证实。

方法

我们利用癌症基因组计划进行大规模基因表达分析以进行发现,并生成另一个跨不同癌症的大型独立癌细胞系数据集用于验证。我们比较了不同方法在独立批次外样本集上预测伏立诺他反应的准确程度,并在一项临床试验中应用多基因标志物预测原则。

结果

使用机器学习,可以从大量癌细胞系的基因表达数据中恢复累加后导致敏感或耐药的微小效应。这种方法能够准确预测伏立诺他反应,而单基因或通路标志物则无法做到。我们的分析概括并梳理了许多先前的发现,并提示染色质重塑、自噬和凋亡等过程具有重要作用。作为概念验证,我们还发现了CHD4的一种新的致病作用,CHD4是一种参与组蛋白去乙酰化酶复合体的解旋酶,与不良临床结局相关。作为临床验证,我们证明在临床检测到伏立诺他常见的剂量限制性毒性血小板减少症数天前就可以进行预测(r = 0.55,P = .004)。

结论

我们的工作表明从单基因/通路评估到同时评估多个独立的高通量基因表达数据集的范式转变,这可以很容易地扩展到其他因类似问题阻碍临床应用的研究性化合物。

相似文献

引用本文的文献

本文引用的文献

5

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验