Lenhart Kaitlin C, O'Neill Thomas J, Cheng Zhaokang, Dee Rachel, Demonbreun Alexis R, Li Jianbin, Xiao Xiao, McNally Elizabeth M, Mack Christopher P, Taylor Joan M
Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA.
Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA.
Skelet Muscle. 2015 Aug 21;5:27. doi: 10.1186/s13395-015-0054-6. eCollection 2015.
The plasma membranes of striated muscle cells are particularly susceptible to rupture as they endure significant mechanical stress and strain during muscle contraction, and studies have shown that defects in membrane repair can contribute to the progression of muscular dystrophy. The synaptotagmin-related protein, dysferlin, has been implicated in mediating rapid membrane repair through its ability to direct intracellular vesicles to sites of membrane injury. However, further work is required to identify the precise molecular mechanisms that govern dysferlin targeting and membrane repair. We previously showed that the bin-amphiphysin-Rvs (BAR)-pleckstrin homology (PH) domain containing Rho-GAP GTPase regulator associated with focal adhesion kinase-1 (GRAF1) was dynamically recruited to the tips of fusing myoblasts wherein it promoted membrane merging by facilitating ferlin-dependent capturing of intracellular vesicles. Because acute membrane repair responses involve similar vesicle trafficking complexes/events and because our prior studies in GRAF1-deficient tadpoles revealed a putative role for GRAF1 in maintaining muscle membrane integrity, we postulated that GRAF1 might also play an important role in facilitating dysferlin-dependent plasma membrane repair.
We used an in vitro laser-injury model to test whether GRAF1 was necessary for efficient muscle membrane repair. We also generated dystrophin/GRAF1 doubledeficient mice by breeding mdx mice with GRAF1 hypomorphic mice. Evans blue dye uptake and extensive morphometric analyses were used to assess sarcolemmal integrity and related pathologies in cardiac and skeletal muscles isolated from these mice.
Herein, we show that GRAF1 is dynamically recruited to damaged skeletal and cardiac muscle plasma membranes and that GRAF1-depleted muscle cells have reduced membrane healing abilities. Moreover, we show that dystrophin depletion exacerbated muscle damage in GRAF1-deficient mice and that mice with dystrophin/GRAF1 double deficiency phenocopied the severe muscle pathologies observed in dystrophin/dysferlin-double null mice. Consistent with a model that GRAF1 facilitates dysferlin-dependent membrane patching, we found that GRAF1 associates with and regulates plasma membrane deposition of dysferlin.
Overall, our work indicates that GRAF1 facilitates dysferlin-dependent membrane repair following acute muscle injury. These findings indicate that GRAF1 might play a role in the phenotypic variation and pathological progression of cardiac and skeletal muscle degeneration in muscular dystrophy patients.
横纹肌细胞的质膜在肌肉收缩过程中承受着巨大的机械应力和应变,因此特别容易破裂,并且研究表明膜修复缺陷会导致肌肉萎缩症的进展。与突触结合蛋白相关的蛋白——dysferlin,因其能够将细胞内囊泡导向膜损伤部位,而被认为在介导快速膜修复中发挥作用。然而,需要进一步的研究来确定控制dysferlin靶向和膜修复的精确分子机制。我们之前表明,含有Rho-GAP GTP酶调节剂(与粘着斑激酶-1相关,即GRAF1)的bin-双栖蛋白-Rvs(BAR)-普列克底物蛋白同源(PH)结构域被动态招募到融合的成肌细胞尖端,在那里它通过促进依赖ferlin的细胞内囊泡捕获来促进膜融合。由于急性膜修复反应涉及类似的囊泡运输复合物/事件,并且因为我们之前对GRAF1缺陷型蝌蚪的研究揭示了GRAF1在维持肌肉膜完整性方面的假定作用,我们推测GRAF1在促进依赖dysferlin的质膜修复中也可能发挥重要作用。
我们使用体外激光损伤模型来测试GRAF1对于有效的肌肉膜修复是否必要。我们还通过将mdx小鼠与GRAF1低表达小鼠杂交,培育出了肌营养不良蛋白/GRAF1双缺陷小鼠。使用伊文思蓝染料摄取和广泛的形态计量分析来评估从这些小鼠分离出的心脏和骨骼肌的肌膜完整性及相关病理情况。
在此,我们表明GRAF1被动态招募到受损的骨骼肌和心肌质膜,并且缺乏GRAF1的肌肉细胞的膜愈合能力降低。此外,我们表明肌营养不良蛋白的缺失加剧了GRAF1缺陷型小鼠的肌肉损伤,并且肌营养不良蛋白/GRAF1双缺陷小鼠表现出了在肌营养不良蛋白/dysferlin双缺失小鼠中观察到的严重肌肉病理特征。与GRAF1促进依赖dysferlin的膜修补的模型一致,我们发现GRAF1与dysferlin结合并调节其在质膜上的沉积。
总体而言,我们的工作表明GRAF1在急性肌肉损伤后促进依赖dysferlin的膜修复。这些发现表明GRAF1可能在肌肉萎缩症患者心脏和骨骼肌变性的表型变异和病理进展中发挥作用。