Gonzalez Solveyra Estefania, Szleifer Igal
Department of Biomedical Engineering, Department of Chemistry and Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, United States.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2016 May;8(3):334-54. doi: 10.1002/wnan.1365. Epub 2015 Aug 27.
The use of nanomaterials for drug delivery and theranostics applications is a promising paradigm in nanomedicine, as it brings together the best features of nanotechnolgy, molecular biology, and medicine. To fully exploit the synergistic potential of such interdisciplinary strategy, a comprehensive description of the interactions at the interface between nanomaterials and biological systems is not only crucial, but also mandatory. Routine strategies to engineer nanomaterial-based drugs comprise modifying their surface with biocompatible and targeting ligands, in many cases resorting to modular approaches that assume additive behavior. However, emergent behavior can be observed when combining confinement and curvature. The final properties of functionalized nanomaterials become dependent not only on the properties of their constituents but also on the geometry of the nano-bio interface, and on the local molecular environment. Modularity no longer holds, and the coupling between interactions, chemical equilibrium, and molecular organization has to be directly addressed in order to design smart nanomaterials with controlled spatial functionalization envisioning optimized biomedical applications. Nanoparticle's curvature becomes an integral part of the design strategy, enabling to control and engineer the chemical and surface properties with molecular precision. Understanding how nanoparticle size, morphology, and surface chemistry are interrelated will put us one step closer to engineering nanobiomaterials capable of mimicking biological structures and their behaviors, paving the way into applications and the possibility to elucidate the use of curvature by biological systems. WIREs Nanomed Nanobiotechnol 2016, 8:334-354. doi: 10.1002/wnan.1365 For further resources related to this article, please visit the WIREs website.
将纳米材料用于药物递送和治疗诊断应用是纳米医学中一个很有前景的范例,因为它融合了纳米技术、分子生物学和医学的最佳特性。为了充分发挥这种跨学科策略的协同潜力,全面描述纳米材料与生物系统之间界面的相互作用不仅至关重要,而且是必不可少的。设计基于纳米材料的药物的常规策略包括用生物相容性和靶向配体修饰其表面,在许多情况下采用假定具有加和行为的模块化方法。然而,当结合限制和曲率时,可以观察到新出现的行为。功能化纳米材料的最终性质不仅取决于其成分的性质,还取决于纳米 - 生物界面的几何形状以及局部分子环境。模块化不再适用,为了设计具有可控空间功能化的智能纳米材料以实现优化的生物医学应用,必须直接解决相互作用、化学平衡和分子组织之间的耦合问题。纳米颗粒的曲率成为设计策略的一个组成部分,能够以分子精度控制和设计化学和表面性质。了解纳米颗粒的尺寸、形态和表面化学如何相互关联将使我们更接近设计能够模仿生物结构及其行为的纳米生物材料,为应用铺平道路,并有可能阐明生物系统对曲率的利用。WIREs纳米医学与纳米生物技术2016年,8:334 - 354。doi:10.1002/wnan.1365 有关本文的更多资源,请访问WIREs网站。