Universidade Federal de Mato Grosso, Departamento de Química, Avenida Fernando Correa da Costa S/N-Cidade Universitária, Cuiabá, Mato Grosso, 78060-900, Brazil.
Biotechnol Lett. 2021 Jan;43(1):1-12. doi: 10.1007/s10529-020-03047-0. Epub 2020 Nov 6.
Nanoparticles promise to revolutionize the way we think of ordinary materials thanks to the new features such small structures exhibit which include strength, durability, optical and magnetics properties. Magnetic iron oxide nanoparticles (IONPs) are a prominent class of NMs because of their potential application in magnetic separation, hyperthermia, targeted drug delivery, and catalysis. Most synthetic nanoparticulate platforms rely on the use of tough chemical procedures associated with unfriendly, harmful and costly reactants. For this reason, bio-inspired approaches have become the most successful alternatives to fabricate nanomaterials in an "eco-friendly" manner, and many bio-protocols that make use of substrates from plants and microorganisms have been successfully applied in the synthesis of magnetic IONPs. In this review, the main biosynthesis protocols applied in the synthesis of iron oxide nanoparticles are discussed. A discussion on the challenges for a second stage perspective which would be a large scale production is also given.
纳米粒子有望彻底改变我们对普通材料的看法,这要归功于这些微小结构所表现出的新特性,包括强度、耐久性、光学和磁性。磁性氧化铁纳米粒子 (IONP) 是一类很突出的纳米材料,因为它们在磁性分离、热疗、靶向药物输送和催化方面有潜在的应用。大多数合成纳米颗粒平台都依赖于使用与不友好、有害和昂贵的反应物相关的强硬化学程序。出于这个原因,生物启发的方法已成为以“环保”方式制造纳米材料的最成功替代方法,并且许多利用植物和微生物基质的生物协议已成功应用于磁性 IONP 的合成。在这篇综述中,讨论了应用于氧化铁纳米粒子合成的主要生物合成方案。还讨论了在大规模生产方面的下一个阶段的挑战。