Witts Emily C, Nascimento Filipe, Miles Gareth B
School of Psychology and Neuroscience, University of St Andrews, St Andrews, Fife, United Kingdom.
School of Psychology and Neuroscience, University of St Andrews, St Andrews, Fife, United Kingdom
J Neurophysiol. 2015 Oct;114(4):2305-15. doi: 10.1152/jn.00574.2014. Epub 2015 Aug 26.
Neuromodulation allows neural networks to adapt to varying environmental and biomechanical demands. Purinergic signaling is known to be an important modulatory system in many parts of the CNS, including motor control circuitry. We have recently shown that adenosine modulates the output of mammalian spinal locomotor control circuitry (Witts EC, Panetta KM, Miles GB. J Neurophysiol 107: 1925-1934, 2012). Here we investigated the cellular mechanisms underlying this adenosine-mediated modulation. Whole cell patch-clamp recordings were performed on ventral horn interneurons and motoneurons within in vitro mouse spinal cord slice preparations. We found that adenosine hyperpolarized interneurons and reduced the frequency and amplitude of synaptic inputs to interneurons. Both effects were blocked by the A1-type adenosine receptor antagonist DPCPX. Analysis of miniature postsynaptic currents recorded from interneurons revealed that adenosine reduced their frequency but not amplitude, suggesting that adenosine acts on presynaptic receptors to modulate synaptic transmission. In contrast to interneurons, recordings from motoneurons revealed an adenosine-mediated depolarization. The frequency and amplitude of synaptic inputs to motoneurons were again reduced by adenosine, but we saw no effect on miniature postsynaptic currents. Again these effects on motoneurons were blocked by DPCPX. Taken together, these results demonstrate differential effects of adenosine, acting via A1 receptors, in the mouse spinal cord. Adenosine has a general inhibitory action on ventral horn interneurons while potentially maintaining motoneuron excitability. This may allow for adaptation of the locomotor pattern generated by interneuronal networks while helping to ensure the maintenance of overall motor output.
神经调节使神经网络能够适应不断变化的环境和生物力学需求。已知嘌呤能信号传导是中枢神经系统许多部位(包括运动控制回路)中的重要调节系统。我们最近发现,腺苷可调节哺乳动物脊髓运动控制回路的输出(Witts EC,Panetta KM,Miles GB。《神经生理学杂志》107:1925 - 1934,2012年)。在此,我们研究了这种腺苷介导的调节作用背后的细胞机制。在体外小鼠脊髓切片标本中的腹角中间神经元和运动神经元上进行了全细胞膜片钳记录。我们发现,腺苷使中间神经元超极化,并降低了输入到中间神经元的突触输入的频率和幅度。这两种效应均被A1型腺苷受体拮抗剂DPCPX阻断。对从中间神经元记录的微小突触后电流的分析表明,腺苷降低了它们的频率,但未降低幅度,这表明腺苷作用于突触前受体以调节突触传递。与中间神经元不同,对运动神经元的记录显示出腺苷介导的去极化。腺苷再次降低了输入到运动神经元的突触输入的频率和幅度,但我们未观察到对微小突触后电流有影响。同样,这些对运动神经元的效应也被DPCPX阻断。综上所述,这些结果表明,腺苷通过A1受体在小鼠脊髓中发挥不同的作用。腺苷对腹角中间神经元具有普遍的抑制作用,同时可能维持运动神经元的兴奋性。这可能允许中间神经元网络产生的运动模式进行适应性调整,同时有助于确保整体运动输出的维持。