Schmitt Clemens N Z, Winter Alette, Bertinetti Luca, Masic Admir, Strauch Peter, Harrington Matthew J
Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam 14424, Germany.
Institute of Chemistry, University of Potsdam, Potsdam 14476, Germany.
J R Soc Interface. 2015 Sep 6;12(110):0466. doi: 10.1098/rsif.2015.0466.
Protein-metal coordination interactions were recently found to function as crucial mechanical cross-links in certain biological materials. Mussels, for example, use Fe ions from the local environment coordinated to DOPA-rich proteins to stiffen the protective cuticle of their anchoring byssal attachment threads. Bioavailability of metal ions in ocean habitats varies significantly owing to natural and anthropogenic inputs on both short and geological spatio-temporal scales leading to large variations in byssal thread metal composition; however, it is not clear how or if this affects thread performance. Here, we demonstrate that in natural environments mussels can opportunistically replace Fe ions in the DOPA coordination complex with V and Al. In vitro removal of the native DOPA-metal complexes with ethylenediaminetetraacetic acid and replacement with either Fe or V does not lead to statistically significant changes in cuticle performance, indicating that each metal ion is equally sufficient as a DOPA cross-linking agent, able to account for nearly 85% of the stiffness and hardness of the material. Notably, replacement with Al ions also leads to full recovery of stiffness, but only 82% recovery of hardness. These findings have important implications for the adaptability of this biological material in a dynamically changing and unpredictable habitat.
蛋白质 - 金属配位相互作用最近被发现是某些生物材料中至关重要的机械交联。例如,贻贝利用从局部环境中获取的铁离子与富含多巴的蛋白质配位,来强化其用于锚定的足丝附着线的保护性角质层。由于自然和人为输入在短期和地质时空尺度上的差异,海洋栖息地中金属离子的生物可利用性显著不同,这导致足丝的金属组成有很大差异;然而,尚不清楚这如何或是否会影响足丝性能。在此,我们证明在自然环境中,贻贝能够随机地用钒和铝替代多巴配位复合物中的铁离子。用乙二胺四乙酸体外去除天然的多巴 - 金属复合物并用铁或钒替代,不会导致角质层性能出现统计学上的显著变化,这表明每种金属离子作为多巴交联剂同样有效,能够解释该材料近85%的硬度和刚度。值得注意的是,用铝离子替代也能使刚度完全恢复,但硬度仅恢复82%。这些发现对于这种生物材料在动态变化且不可预测的栖息地中的适应性具有重要意义。