Suppr超能文献

贻贝制造贝壳过程中儿茶酚的分隔式处理决定了 DOPA 的命运。

Compartmentalized processing of catechols during mussel byssus fabrication determines the destiny of DOPA.

机构信息

Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada.

Department of Chemistry, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada.

出版信息

Proc Natl Acad Sci U S A. 2020 Apr 7;117(14):7613-7621. doi: 10.1073/pnas.1919712117. Epub 2020 Mar 24.

Abstract

Inspired largely by the role of the posttranslationally modified amino acid dopa (DOPA) in mussel adhesion, catechol functional groups have become commonplace in medical adhesives, tissue scaffolds, and advanced smart polymers. Yet, the complex redox chemistry of catechol groups complicates cross-link regulation, hampering fabrication and the long-term stability/performance of mussel-inspired polymers. Here, we investigated the various fates of DOPA residues in proteins comprising mussel byssus fibers before, during, and after protein secretion. Utilizing a combination of histological staining and confocal Raman spectroscopy on native tissues, as well as peptide-based cross-linking studies, we have identified at least two distinct DOPA-based cross-linking pathways during byssus fabrication, achieved by oxidative covalent cross-linking or formation of metal coordination interactions under reducing conditions, respectively. We suggest that these end states are spatiotemporally regulated by the microenvironments in which the proteins are stored prior to secretion, which are retained after formation-in particular, due to the presence of reducing moieties. These findings provide physicochemical pathways toward greater control over properties of synthetic catechol-based polymers and adhesives.

摘要

受贻贝黏附中经翻译后修饰的氨基酸多巴(DOPA)作用的启发,儿茶酚官能团已广泛应用于医用胶粘剂、组织支架和先进智能聚合物中。然而,儿茶酚基团的复杂氧化还原化学会使交联调控变得复杂,从而阻碍了贻贝启发型聚合物的制造和长期稳定性/性能。在这里,我们研究了包括贻贝足丝纤维在内的蛋白质中 DOPA 残基在蛋白质分泌前后的各种命运。利用组织的组织学染色和共聚焦拉曼光谱以及基于肽的交联研究,我们已经确定了在足丝制造过程中存在至少两种不同的 DOPA 基交联途径,这是通过氧化共价交联或在还原条件下形成金属配位相互作用来实现的。我们认为这些终态是由蛋白质在分泌前储存的微环境空间和时间调节的,这些终态在形成后得以保留,这主要是由于还原部分的存在。这些发现为控制合成儿茶酚基聚合物和胶粘剂的性能提供了物理化学途径。

相似文献

10
How to Increase Adhesion Strength of Catechol Polymers to Wet Inorganic Surfaces.如何提高儿茶酚聚合物对湿无机表面的粘附力。
Biomacromolecules. 2021 Jan 11;22(1):183-189. doi: 10.1021/acs.biomac.0c00968. Epub 2020 Aug 24.

引用本文的文献

2
Catechol redox maintenance in mussel adhesion.贻贝黏附中的儿茶酚氧化还原维持
Nat Rev Chem. 2025 Mar;9(3):159-172. doi: 10.1038/s41570-024-00673-4. Epub 2025 Jan 15.
5
Molecular Crowding: The History and Development of a Scientific Paradigm.分子拥挤:一种科学范式的历史与发展
Chem Rev. 2024 Mar 27;124(6):3186-3219. doi: 10.1021/acs.chemrev.3c00615. Epub 2024 Mar 11.
7

本文引用的文献

5
Polymerizing Like Mussels Do: Toward Synthetic Mussel Foot Proteins and Resistant Glues.像贻贝那样聚合:合成贻贝足蛋白和耐胶黏剂。
Angew Chem Int Ed Engl. 2018 Nov 26;57(48):15728-15732. doi: 10.1002/anie.201809587. Epub 2018 Oct 31.
8
Mussel adhesion - essential footwork.贻贝附着——关键的基础机制。
J Exp Biol. 2017 Feb 15;220(Pt 4):517-530. doi: 10.1242/jeb.134056.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验