Linz Lucas B, Liu Sijun, Chougule Nanasaheb P, Bonning Bryony C
Department of Entomology, Iowa State University, Ames, Iowa, USA.
Department of Entomology, Iowa State University, Ames, Iowa, USA
J Virol. 2015 Nov;89(22):11203-12. doi: 10.1128/JVI.01479-15. Epub 2015 Aug 26.
Insect-borne plant viruses cause significant agricultural losses and jeopardize sustainable global food production. Although blocking plant virus transmission would allow for crop protection, virus receptors in insect vectors are unknown. Here we identify membrane alanyl aminopeptidase N (APN) as a receptor for pea enation mosaic virus (PEMV) coat protein (CP) in the gut of the pea aphid, Acyrthosiphon pisum, using a far-Western blot method. Pulldown and immunofluorescence binding assays and surface plasmon resonance were used to confirm and characterize CP-APN interaction. PEMV virions and a peptide comprised of PEMV CP fused to a proline-rich hinge (-P-) and green fluorescent protein (CP-P-GFP) specifically bound to APN. Recombinant APN expressed in Sf9 cells resulted in internalization of CP-P-GFP, which was visualized by confocal microscopy; such internalization is an expected hallmark of a functional gut receptor. Finally, in assays with aphid gut-derived brush border membrane vesicles, binding of CP-P-GFP competed with binding of GBP3.1, a peptide previously demonstrated to bind to APN in the aphid gut and to impede PEMV uptake into the hemocoel; this finding supports the hypothesis that GBP3.1 and PEMV bind to and compete for the same APN receptor. These in vitro data combined with previously published in vivo experiments (S. Liu, S. Sivakumar, W. O. Sparks, W. A. Miller, and B. C. Bonning, Virology 401:107-116, 2010, http://dx.doi.org/10.1016/j.virol.2010.02.009) support the identification of APN as the first receptor in a plant virus vector. Knowledge of this receptor will provide for technologies based on PEMV-APN interaction designed to block plant virus transmission and to suppress aphid populations.
A significant proportion of global food production is lost to insect pests. Aphids, in addition to weakening plants by feeding on their sap, are responsible for transmitting about half of the plant viruses vectored by insects. Growers rely heavily on the application of chemical insecticides to manage both aphids and aphid-vectored plant viral disease. To increase our understanding of plant virus-aphid vector interaction, we provide in vitro evidence supporting earlier in vivo work for identification of a receptor protein in the aphid gut called aminopeptidase N, which is responsible for entry of the plant virus pea enation mosaic virus into the pea aphid vector. Enrichment of proteins found on the surface of the aphid gut epithelium resulted in identification of this first aphid gut receptor for a plant virus. This discovery is particularly important since the disruption of plant virus binding to such a receptor may enable the development of a nonchemical strategy for controlling aphid-vectored plant viruses to maximize food production.
昆虫传播的植物病毒会造成重大农业损失,并危及全球可持续粮食生产。尽管阻断植物病毒传播可实现作物保护,但昆虫载体中的病毒受体尚不清楚。在这里,我们使用远缘蛋白质印迹法,将膜丙氨酰氨肽酶N(APN)鉴定为豌豆蚜肠道中豌豆耳突花叶病毒(PEMV)衣壳蛋白(CP)的受体。采用下拉法、免疫荧光结合试验和表面等离子体共振来确认和表征CP-APN相互作用。PEMV病毒粒子以及由PEMV CP与富含脯氨酸的铰链(-P-)和绿色荧光蛋白融合而成的肽(CP-P-GFP)特异性结合APN。在Sf9细胞中表达的重组APN导致CP-P-GFP内化,共聚焦显微镜可观察到这种内化;这种内化是功能性肠道受体的预期特征。最后,在蚜虫肠道来源的刷状缘膜囊泡试验中,CP-P-GFP的结合与GBP3.1的结合相互竞争,GBP3.1是一种先前证明可在蚜虫肠道中与APN结合并阻止PEMV进入血腔的肽;这一发现支持了GBP3.1和PEMV结合并竞争同一APN受体的假说。这些体外数据与先前发表的体内实验(S. Liu、S. Sivakumar、W. O. Sparks、W. A. Miller和B. C. Bonning,《病毒学》401:107 - 116,2010年,http://dx.doi.org/10.1016/j.virol.2010.02.009)共同支持将APN鉴定为植物病毒载体中的首个受体。对该受体的了解将为基于PEMV-APN相互作用的技术提供支持,这些技术旨在阻断植物病毒传播并抑制蚜虫种群。
全球很大一部分粮食产量因害虫而损失。蚜虫除了通过吸食植物汁液使植物衰弱外,还传播约一半由昆虫传播的植物病毒。种植者严重依赖化学杀虫剂的应用来防治蚜虫和由蚜虫传播的植物病毒病。为了增进我们对植物病毒-蚜虫载体相互作用的理解,我们提供了体外证据,支持早期体内研究鉴定出蚜虫肠道中的一种受体蛋白氨肽酶N,它负责植物病毒豌豆耳突花叶病毒进入豌豆蚜载体。对蚜虫肠道上皮表面发现的蛋白质进行富集,从而鉴定出这种植物病毒在蚜虫肠道中的首个受体。这一发现尤为重要,因为破坏植物病毒与这种受体的结合可能有助于开发一种非化学策略来控制由蚜虫传播的植物病毒,从而实现粮食产量最大化。