Chen Ye, Kim Jae Kyoung, Hirning Andrew J, Josić Krešimir, Bennett Matthew R
Department of Biosciences, Rice University, Houston, TX 77005, USA.
Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea. Mathematical Biosciences Institute, The Ohio State University, Columbus, OH 43210, USA.
Science. 2015 Aug 28;349(6251):986-9. doi: 10.1126/science.aaa3794.
A challenge of synthetic biology is the creation of cooperative microbial systems that exhibit population-level behaviors. Such systems use cellular signaling mechanisms to regulate gene expression across multiple cell types. We describe the construction of a synthetic microbial consortium consisting of two distinct cell types—an "activator" strain and a "repressor" strain. These strains produced two orthogonal cell-signaling molecules that regulate gene expression within a synthetic circuit spanning both strains. The two strains generated emergent, population-level oscillations only when cultured together. Certain network topologies of the two-strain circuit were better at maintaining robust oscillations than others. The ability to program population-level dynamics through the genetic engineering of multiple cooperative strains points the way toward engineering complex synthetic tissues and organs with multiple cell types.
合成生物学面临的一个挑战是创建能够展现群体水平行为的合作微生物系统。此类系统利用细胞信号传导机制来调控多种细胞类型中的基因表达。我们描述了一个由两种不同细胞类型——“激活剂”菌株和“阻遏剂”菌株——组成的合成微生物群落的构建。这些菌株产生了两种正交的细胞信号分子,它们在跨越两种菌株的合成回路中调控基因表达。只有当共同培养时,这两种菌株才会产生群体水平的涌现振荡。两菌株回路的某些网络拓扑结构在维持稳健振荡方面比其他结构更好。通过对多种合作菌株进行基因工程来编程群体水平动态的能力为构建具有多种细胞类型的复杂合成组织和器官指明了方向。