Suppr超能文献

用于合成生物学的微流体技术:从设计到执行

Microfluidics for synthetic biology: from design to execution.

作者信息

Ferry M S, Razinkov I A, Hasty J

机构信息

Department of Bioengineering, University of California, San Diego, California, USA.

出版信息

Methods Enzymol. 2011;497:295-372. doi: 10.1016/B978-0-12-385075-1.00014-7.

Abstract

With the expanding interest in cellular responses to dynamic environments, microfluidic devices have become important experimental platforms for biological research. Microfluidic "microchemostat" devices enable precise environmental control while capturing high quality, single-cell gene expression data. For studies of population heterogeneity and gene expression noise, these abilities are crucial. Here, we describe the necessary steps for experimental microfluidics using devices created in our lab as examples. First, we discuss the rational design of microchemostats and the tools available to predict their performance. We carefully analyze the critical parts of an example device, focusing on the most important part of any microchemostat: the cell trap. Next, we present a method for generating on-chip dynamic environments using an integrated fluidic junction coupled to linear actuators. Our system relies on the simple modulation of hydrostatic pressure to alter the mixing ratio between two source reservoirs and we detail the software and hardware behind it. To expand the throughput of microchemostat experiments, we describe how to build larger, parallel versions of simpler devices. To analyze the large amounts of data, we discuss methods for automated cell tracking, focusing on the special problems presented by Saccharomyces cerevisiae cells. The manufacturing of microchemostats is described in complete detail: from the photolithographic processing of the wafer to the final bonding of the PDMS chip to glass coverslip. Finally, the procedures for conducting Escherichia coli and S. cerevisiae microchemostat experiments are addressed.

摘要

随着对细胞对动态环境反应的兴趣不断增加,微流控设备已成为生物学研究的重要实验平台。微流控“微恒化器”设备能够在捕获高质量单细胞基因表达数据的同时实现精确的环境控制。对于群体异质性和基因表达噪声的研究而言,这些能力至关重要。在这里,我们以我们实验室制造的设备为例,描述实验性微流控的必要步骤。首先,我们讨论微恒化器的合理设计以及可用于预测其性能的工具。我们仔细分析了一个示例设备的关键部分,重点关注任何微恒化器最重要的部分:细胞阱。接下来,我们提出了一种使用与线性致动器耦合的集成流体连接来生成片上动态环境的方法。我们的系统依靠静水压力的简单调节来改变两个源储液器之间的混合比例,并详细介绍了其背后的软件和硬件。为了提高微恒化器实验的通量,我们描述了如何构建更简单设备的更大的并行版本。为了分析大量数据,我们讨论了自动细胞跟踪的方法,重点关注酿酒酵母细胞所呈现的特殊问题。详细描述了微恒化器的制造过程:从晶圆的光刻处理到PDMS芯片与玻璃盖玻片的最终键合。最后,阐述了进行大肠杆菌和酿酒酵母微恒化器实验的步骤。

相似文献

5
A Versatile Microfluidic Device for Automating Synthetic Biology.一种用于自动化合成生物学的多功能微流控装置。
ACS Synth Biol. 2015 Oct 16;4(10):1151-64. doi: 10.1021/acssynbio.5b00062. Epub 2015 Jun 15.
9
Microfluidics in structured multimaterial fibers.结构化多材料纤维中的微流控技术。
Proc Natl Acad Sci U S A. 2018 Nov 13;115(46):E10830-E10838. doi: 10.1073/pnas.1809459115. Epub 2018 Oct 29.
10
Microfluidic manipulation with artificial/bioinspired cilia.微流控中的人工/仿生纤毛操控。
Trends Biotechnol. 2013 Feb;31(2):85-91. doi: 10.1016/j.tibtech.2012.11.005. Epub 2012 Dec 12.

引用本文的文献

3
Engineering Plasmids with Synthetic Origins of Replication.构建具有合成复制起点的质粒。
bioRxiv. 2025 Feb 21:2025.02.21.639468. doi: 10.1101/2025.02.21.639468.
4
modelling of organ-on-a-chip devices: an overview.器官芯片设备建模:综述
Front Bioeng Biotechnol. 2025 Jan 27;12:1520795. doi: 10.3389/fbioe.2024.1520795. eCollection 2024.
5
Islet-on-a-chip for the study of pancreatic β-cell function.用于研究胰腺β细胞功能的芯片胰岛
In Vitro Model. 2021 Dec 2;1(1):41-57. doi: 10.1007/s44164-021-00005-6. eCollection 2022 Feb.
7
Single-Cell Microfluidics: A Primer for Microbiologists.单细胞微流控:微生物学家入门指南。
J Phys Chem B. 2024 Oct 24;128(42):10311-10328. doi: 10.1021/acs.jpcb.4c02746. Epub 2024 Oct 14.
8
A mechanism for slow rhythms in coordinated pancreatic islet activity.协调的胰岛活动中慢节律的一种机制。
Biophys J. 2024 Sep 17;123(18):3257-3266. doi: 10.1016/j.bpj.2024.07.028. Epub 2024 Jul 26.

本文引用的文献

2
Streaming instability in growing cell populations.细胞群体生长中的流动不稳定性。
Phys Rev Lett. 2010 May 21;104(20):208101. doi: 10.1103/PhysRevLett.104.208101. Epub 2010 May 19.
3
A synchronized quorum of genetic clocks.一个同步的遗传时钟多数派。
Nature. 2010 Jan 21;463(7279):326-30. doi: 10.1038/nature08753.
4
Tracking lineages of single cells in lines using a microfluidic device.使用微流控装置追踪细胞系中的单细胞谱系。
Proc Natl Acad Sci U S A. 2009 Oct 27;106(43):18149-54. doi: 10.1073/pnas.0903163106. Epub 2009 Oct 13.
7
8
Metabolic gene regulation in a dynamically changing environment.动态变化环境中的代谢基因调控
Nature. 2008 Aug 28;454(7208):1119-22. doi: 10.1038/nature07211. Epub 2008 Jul 30.
9
A practical guide to the staggered herringbone mixer.交错式人字混合器实用指南。
Lab Chip. 2008 Jul;8(7):1121-9. doi: 10.1039/b802562b. Epub 2008 May 23.
10
Signal processing by the HOG MAP kinase pathway.HOG丝裂原活化蛋白激酶途径的信号转导
Proc Natl Acad Sci U S A. 2008 May 20;105(20):7165-70. doi: 10.1073/pnas.0710770105. Epub 2008 May 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验