Thatte Nitish, Geyer Hartmut
IEEE Trans Biomed Eng. 2016 May;63(5):904-913. doi: 10.1109/TBME.2015.2472533. Epub 2015 Aug 25.
Lower limb amputees are at high risk of falling as current prosthetic legs provide only limited functionality for recovering balance after unexpected disturbances. For instance, the most established control method used on powered leg prostheses tracks local joint impedance functions without taking the global function of the leg in balance recovery into account. Here, we explore an alternative control policy for powered transfemoral prostheses that considers the global leg function and is based on a neuromuscular model of human locomotion.
We adapt this model to describe and simulate an amputee walking with a powered prosthesis using the proposed control, and evaluate the gait robustness when confronted with rough ground and swing leg disturbances. We then implement and partially evaluate the resulting controller on a leg prosthesis prototype worn by a nonamputee user.
In simulation, the proposed prosthesis control leads to gaits that are more robust than those obtained by the impedance control method. The initial hardware experiments with the prosthesis prototype show that the proposed control reproduces normal walking patterns qualitatively and effectively responds to disturbances in early and late swing. However, the response to midswing disturbances neither replicates human responses nor averts falls.
The neuromuscular model control is a promising alternative to existing prosthesis controls, although further research will need to improve on the initial implementation and determine how well these results transfer to amputee gait.
This paper provides a potential avenue for future development of control policies that help to improve amputee balance recovery.
下肢截肢者跌倒风险很高,因为当前的假肢在意外干扰后恢复平衡方面仅提供有限的功能。例如,动力腿假肢上使用最广泛的控制方法追踪局部关节阻抗函数,而没有考虑腿部在平衡恢复中的整体功能。在此,我们探索一种用于动力型经股骨假肢的替代控制策略,该策略考虑腿部的整体功能并基于人类运动的神经肌肉模型。
我们采用此模型来描述和模拟使用所提出的控制方法的截肢者佩戴动力假肢行走的情况,并评估在面对粗糙地面和摆动腿干扰时的步态稳健性。然后,我们在非截肢用户佩戴的腿部假肢原型上实现并部分评估所得的控制器。
在模拟中,所提出的假肢控制产生的步态比通过阻抗控制方法获得的步态更稳健。对假肢原型进行的初步硬件实验表明,所提出的控制定性地再现了正常行走模式,并有效应对了摆动前期和后期的干扰。然而,对摆动中期干扰的响应既不能复制人类的反应,也无法避免跌倒。
神经肌肉模型控制是现有假肢控制的一种有前途的替代方法,尽管需要进一步研究来改进初始实现方式,并确定这些结果在多大程度上适用于截肢者步态。
本文为未来控制策略的发展提供了一条潜在途径,有助于改善截肢者的平衡恢复。