Hamilton Peter W, Wang Yinhai, Boyd Clinton, James Jacqueline A, Loughrey Maurice B, Hougton Joseph P, Boyle David P, Kelly Paul, Maxwell Perry, McCleary David, Diamond James, McArt Darragh G, Tunstall Jonathon, Bankhead Peter, Salto-Tellez Manuel
Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK.
PathXL Ltd, Northern Ireland Science Park, Belfast, UK.
Oncotarget. 2015 Sep 29;6(29):27938-52. doi: 10.18632/oncotarget.4391.
The discovery and clinical application of molecular biomarkers in solid tumors, increasingly relies on nucleic acid extraction from FFPE tissue sections and subsequent molecular profiling. This in turn requires the pathological review of haematoxylin & eosin (H&E) stained slides, to ensure sample quality, tumor DNA sufficiency by visually estimating the percentage tumor nuclei and tumor annotation for manual macrodissection. In this study on NSCLC, we demonstrate considerable variation in tumor nuclei percentage between pathologists, potentially undermining the precision of NSCLC molecular evaluation and emphasising the need for quantitative tumor evaluation. We subsequently describe the development and validation of a system called TissueMark for automated tumor annotation and percentage tumor nuclei measurement in NSCLC using computerized image analysis. Evaluation of 245 NSCLC slides showed precise automated tumor annotation of cases using Tissuemark, strong concordance with manually drawn boundaries and identical EGFR mutational status, following manual macrodissection from the image analysis generated tumor boundaries. Automated analysis of cell counts for % tumor measurements by Tissuemark showed reduced variability and significant correlation (p < 0.001) with benchmark tumor cell counts. This study demonstrates a robust image analysis technology that can facilitate the automated quantitative analysis of tissue samples for molecular profiling in discovery and diagnostics.
实体瘤中分子生物标志物的发现及临床应用,越来越依赖于从福尔马林固定石蜡包埋(FFPE)组织切片中提取核酸并进行后续的分子分析。这反过来又需要对苏木精和伊红(H&E)染色的玻片进行病理检查,以确保样本质量、通过目测估计肿瘤细胞核百分比来评估肿瘤DNA的充足性,以及为手动宏观解剖进行肿瘤标注。在这项关于非小细胞肺癌(NSCLC)的研究中,我们证明了病理学家之间肿瘤细胞核百分比存在相当大的差异,这可能会削弱NSCLC分子评估的准确性,并强调了进行定量肿瘤评估的必要性。我们随后描述了一种名为TissueMark的系统的开发和验证,该系统使用计算机图像分析对NSCLC进行自动肿瘤标注和肿瘤细胞核百分比测量。对245张NSCLC玻片的评估显示,使用TissueMark对病例进行了精确的自动肿瘤标注,与手动绘制的边界高度一致,并且在从图像分析生成的肿瘤边界进行手动宏观解剖后,EGFR突变状态相同。TissueMark对肿瘤细胞百分比测量的细胞计数自动分析显示变异性降低,并且与基准肿瘤细胞计数具有显著相关性(p < 0.001)。这项研究展示了一种强大的图像分析技术,该技术可以促进对组织样本进行自动定量分析,以用于发现和诊断中的分子分析。