Suppr超能文献

利用表观遗传数据预测染色体的空间组织。

Predicting the spatial organization of chromosomes using epigenetic data.

作者信息

Mourad Raphaël, Cuvier Olivier

机构信息

Laboratory of Molecular Biology of Eukaryotes (LBME), CNRS - University of Toulouse (UPS), F-31000, Toulouse, France.

出版信息

Genome Biol. 2015 Aug 29;16(1):182. doi: 10.1186/s13059-015-0752-8.

Abstract

Chromosome folding can reinforce the demarcation between euchromatin and heterochromatin. Two new studies show how epigenetic data, including DNA methylation, can accurately predict chromosome folding in three dimensions. Such computational approaches reinforce the idea of a linkage between epigenetically marked chromatin domains and their segregation into distinct compartments at the megabase scale or topological domains at a higher resolution. Please see related articles: http://dx.doi.org/10.1186/s13059-015-0741-y and http://dx.doi.org/10.1186/s13059-015-0740-z.

摘要

染色体折叠可加强常染色质与异染色质之间的界限。两项新研究展示了包括DNA甲基化在内的表观遗传数据如何能够准确预测三维染色体折叠。此类计算方法强化了这样一种观点,即表观遗传标记的染色质结构域之间存在联系,且它们在兆碱基尺度上会分离成不同的区室,或者在更高分辨率下分离成拓扑结构域。请参阅相关文章:http://dx.doi.org/10.1186/s13059-015-0741-y和http://dx.doi.org/10.1186/s13059-015-0740-z。

相似文献

1
Predicting the spatial organization of chromosomes using epigenetic data.
Genome Biol. 2015 Aug 29;16(1):182. doi: 10.1186/s13059-015-0752-8.
3
Super-resolution imaging reveals distinct chromatin folding for different epigenetic states.
Nature. 2016 Jan 21;529(7586):418-22. doi: 10.1038/nature16496. Epub 2016 Jan 13.
4
Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin.
Nat Struct Mol Biol. 2004 Nov;11(11):1076-83. doi: 10.1038/nsmb845. Epub 2004 Oct 10.
5
Epigenetic aging clocks in mice and men.
Genome Biol. 2017 Jun 14;18(1):107. doi: 10.1186/s13059-017-1245-8.
6
Epigenetic regulation by histone methylation and histone variants.
Mol Endocrinol. 2005 Mar;19(3):563-73. doi: 10.1210/me.2004-0496. Epub 2005 Jan 27.
7
Response to: the nature of evidence for and against epigenetic inheritance.
Genome Biol. 2015 Jul 11;16(1):138. doi: 10.1186/s13059-015-0714-1.
8
DNA methylomes, histone codes and miRNAs: tying it all together.
Int J Biochem Cell Biol. 2009 Jan;41(1):87-95. doi: 10.1016/j.biocel.2008.09.005. Epub 2008 Sep 13.
9
The nature of evidence for and against epigenetic inheritance.
Genome Biol. 2015 Jul 11;16(1):137. doi: 10.1186/s13059-015-0709-y.
10
Reader interactome of epigenetic histone marks in birds.
Proteomics. 2016 Feb;16(3):427-36. doi: 10.1002/pmic.201500217.

引用本文的文献

2
Interplay between epigenome and 3D chromatin structure.
BMB Rep. 2023 Dec;56(12):633-644. doi: 10.5483/BMBRep.2023-0197.
6
The Dynamic 3D Genome in Gametogenesis and Early Embryonic Development.
Cells. 2019 Jul 29;8(8):788. doi: 10.3390/cells8080788.
7
Automatic detection of genomic regions with informative epigenetic patterns.
BMC Genomics. 2018 Nov 28;19(1):847. doi: 10.1186/s12864-018-5286-5.
8
From 1D sequence to 3D chromatin dynamics and cellular functions: a phase separation perspective.
Nucleic Acids Res. 2018 Oct 12;46(18):9367-9383. doi: 10.1093/nar/gky633.
9
An epigenetic association of malformations, adverse reproductive outcomes, and fetal origins hypothesis related effects.
J Assist Reprod Genet. 2018 Jun;35(6):953-964. doi: 10.1007/s10815-018-1197-2. Epub 2018 May 9.
10
Computational characterization of chromatin domain boundary-associated genomic elements.
Nucleic Acids Res. 2017 Oct 13;45(18):10403-10414. doi: 10.1093/nar/gkx738.

本文引用的文献

1
2
Predicting chromatin organization using histone marks.
Genome Biol. 2015 Aug 14;16(1):162. doi: 10.1186/s13059-015-0740-z.
3
Chromatin architecture reorganization during stem cell differentiation.
Nature. 2015 Feb 19;518(7539):331-6. doi: 10.1038/nature14222.
4
A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping.
Cell. 2014 Dec 18;159(7):1665-80. doi: 10.1016/j.cell.2014.11.021. Epub 2014 Dec 11.
5
Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes.
Cell. 2014 Oct 9;159(2):374-387. doi: 10.1016/j.cell.2014.09.030.
6
Chromatin immunoprecipitation indirect peaks highlight long-range interactions of insulator proteins and Pol II pausing.
Mol Cell. 2014 Feb 20;53(4):672-81. doi: 10.1016/j.molcel.2013.12.029. Epub 2014 Jan 30.
7
Architectural protein subclasses shape 3D organization of genomes during lineage commitment.
Cell. 2013 Jun 6;153(6):1281-95. doi: 10.1016/j.cell.2013.04.053. Epub 2013 May 23.
8
Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data.
Nat Rev Genet. 2013 Jun;14(6):390-403. doi: 10.1038/nrg3454. Epub 2013 May 9.
9
Chromosomal domains: epigenetic contexts and functional implications of genomic compartmentalization.
Curr Opin Genet Dev. 2013 Apr;23(2):197-203. doi: 10.1016/j.gde.2012.12.009. Epub 2013 Feb 14.
10
Comprehensive mapping of long-range interactions reveals folding principles of the human genome.
Science. 2009 Oct 9;326(5950):289-93. doi: 10.1126/science.1181369.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验