Suppr超能文献

葡聚糖纤维素乙醇:能源作物和海洋生物质中未被发掘的生物燃料潜力。

Glucanocellulosic ethanol: the undiscovered biofuel potential in energy crops and marine biomass.

作者信息

Falter Christian, Zwikowics Claudia, Eggert Dennis, Blümke Antje, Naumann Marcel, Wolff Kerstin, Ellinger Dorothea, Reimer Rudolph, Voigt Christian A

机构信息

Phytopathology and Biochemistry, Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany.

Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany.

出版信息

Sci Rep. 2015 Sep 1;5:13722. doi: 10.1038/srep13722.

Abstract

Converting biomass to biofuels is a key strategy in substituting fossil fuels to mitigate climate change. Conventional strategies to convert lignocellulosic biomass to ethanol address the fermentation of cellulose-derived glucose. Here we used super-resolution fluorescence microscopy to uncover the nanoscale structure of cell walls in the energy crops maize and Miscanthus where the typical polymer cellulose forms an unconventional layered architecture with the atypical (1, 3)-β-glucan polymer callose. This raised the question about an unused potential of (1, 3)-β-glucan in the fermentation of lignocellulosic biomass. Engineering biomass conversion for optimized (1, 3)-β-glucan utilization, we increased the ethanol yield from both energy crops. The generation of transgenic Miscanthus lines with an elevated (1, 3)-β-glucan content further increased ethanol yield providing a new strategy in energy crop breeding. Applying the (1, 3)-β-glucan-optimized conversion method on marine biomass from brown macroalgae with a naturally high (1, 3)-β-glucan content, we not only substantially increased ethanol yield but also demonstrated an effective co-fermentation of plant and marine biomass. This opens new perspectives in combining different kinds of feedstock for sustainable and efficient biofuel production, especially in coastal regions.

摘要

将生物质转化为生物燃料是替代化石燃料以缓解气候变化的关键策略。将木质纤维素生物质转化为乙醇的传统策略主要针对纤维素衍生葡萄糖的发酵。在此,我们使用超分辨率荧光显微镜揭示了能源作物玉米和芒草细胞壁的纳米级结构,其中典型的聚合物纤维素与非典型的(1,3)-β-葡聚糖聚合物胼胝质形成了一种非常规的层状结构。这引发了关于(1,3)-β-葡聚糖在木质纤维素生物质发酵中未被利用潜力的问题。通过设计生物质转化以优化(1,3)-β-葡聚糖的利用,我们提高了这两种能源作物的乙醇产量。生成(1,3)-β-葡聚糖含量升高的转基因芒草品系进一步提高了乙醇产量,为能源作物育种提供了新策略。将(1,3)-β-葡聚糖优化转化方法应用于天然(1,3)-β-葡聚糖含量高的褐藻大型海藻的海洋生物质,我们不仅大幅提高了乙醇产量,还证明了植物和海洋生物质的有效共发酵。这为结合不同种类原料进行可持续高效生物燃料生产开辟了新前景,特别是在沿海地区。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf9a/4555182/5436b80521d0/srep13722-f2.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验