Griese Julia J, Kositzki Ramona, Schrapers Peer, Branca Rui M M, Nordström Anders, Lehtiö Janne, Haumann Michael, Högbom Martin
From the Stockholm Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden.
the Institut für Experimentalphysik, Freie Universität Berlin, D-14195 Berlin, Germany.
J Biol Chem. 2015 Oct 16;290(42):25254-72. doi: 10.1074/jbc.M115.675223. Epub 2015 Aug 31.
Two recently discovered groups of prokaryotic di-metal carboxylate proteins harbor a heterodinuclear Mn/Fe cofactor. These are the class Ic ribonucleotide reductase R2 proteins and a group of oxidases that are found predominantly in pathogens and extremophiles, called R2-like ligand-binding oxidases (R2lox). We have recently shown that the Mn/Fe cofactor of R2lox self-assembles from Mn(II) and Fe(II) in vitro and catalyzes formation of a tyrosine-valine ether cross-link in the protein scaffold (Griese, J. J., Roos, K., Cox, N., Shafaat, H. S., Branca, R. M., Lehtiö, J., Gräslund, A., Lubitz, W., Siegbahn, P. E., and Högbom, M. (2013) Proc. Natl. Acad. Sci. U.S.A. 110, 17189-17194). Here, we present a detailed structural analysis of R2lox in the nonactivated, reduced, and oxidized resting Mn/Fe- and Fe/Fe-bound states, as well as the nonactivated Mn/Mn-bound state. X-ray crystallography and x-ray absorption spectroscopy demonstrate that the active site ligand configuration of R2lox is essentially the same regardless of cofactor composition. Both the Mn/Fe and the diiron cofactor activate oxygen and catalyze formation of the ether cross-link, whereas the dimanganese cluster does not. The structures delineate likely routes for gated oxygen and substrate access to the active site that are controlled by the redox state of the cofactor. These results suggest that oxygen activation proceeds via similar mechanisms at the Mn/Fe and Fe/Fe center and that R2lox proteins might utilize either cofactor in vivo based on metal availability.
最近发现的两组原核双金属羧酸盐蛋白含有异双核锰/铁辅因子。它们是Ic类核糖核苷酸还原酶R2蛋白和一组主要存在于病原体和嗜极端微生物中的氧化酶,称为R2样配体结合氧化酶(R2lox)。我们最近表明,R2lox的锰/铁辅因子在体外由二价锰和二价铁自组装而成,并催化在蛋白质支架中形成酪氨酸-缬氨酸醚交联(Griese, J. J., Roos, K., Cox, N., Shafaat, H. S., Branca, R. M., Lehtiö, J., Gräslund, A., Lubitz, W., Siegbahn, P. E., and Högbom, M. (2013) Proc. Natl. Acad. Sci. U.S.A. 110, 17189 - 17194)。在此,我们展示了R2lox在未激活、还原和氧化的静止锰/铁和铁/铁结合状态以及未激活的锰/锰结合状态下的详细结构分析。X射线晶体学和X射线吸收光谱表明,无论辅因子组成如何,R2lox的活性位点配体构型基本相同。锰/铁和双铁辅因子都能激活氧气并催化醚交联的形成,而双锰簇则不能。这些结构描绘了由辅因子的氧化还原状态控制的门控氧气和底物进入活性位点的可能途径。这些结果表明,氧气激活在锰/铁和铁/铁中心通过相似的机制进行,并且R2lox蛋白可能根据体内金属的可利用性利用这两种辅因子中的任何一种。