Photonics and Optoelectronics Group, Department of Physics and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität (LMU) , Amalienstaße 54, 80799 Munich, Germany.
Nanosystems Initiative Munich (NIM), Schellingstraße 4, 80799 Munich, Germany.
Nano Lett. 2015 Oct 14;15(10):6521-7. doi: 10.1021/acs.nanolett.5b02985. Epub 2015 Sep 3.
Organometal halide perovskites have recently emerged displaying a huge potential for not only photovoltaic, but also light emitting applications. Exploiting the optical properties of specifically tailored perovskite nanocrystals could greatly enhance the efficiency and functionality of applications based on this material. In this study, we investigate the quantum size effect in colloidal organometal halide perovskite nanoplatelets. By tuning the ratio of the organic cations used, we can control the thickness and consequently the photoluminescence emission of the platelets. Quantum mechanical calculations match well with the experimental values. We find that not only do the properties of the perovskite, but also those of the organic ligands play an important role. Stacking of nanoplatelets leads to the formation of minibands, further shifting the bandgap energies. In addition, we find a large exciton binding energy of up to several hundreds of meV for nanoplatelets thinner than three unit cells, partially counteracting the blueshift induced by quantum confinement. Understanding of the quantum size effects in perovskite nanoplatelets and the ability to tune them provide an additional method with which to manipulate the optical properties of organometal halide perovskites.
金属有机卤化物钙钛矿最近崭露头角,不仅在光伏领域,而且在发光应用领域都显示出巨大的潜力。利用经过专门设计的钙钛矿纳米晶体的光学性质,可以大大提高基于这种材料的应用的效率和功能。在这项研究中,我们研究了胶体金属有机卤化物钙钛矿纳米板中的量子尺寸效应。通过调整所用有机阳离子的比例,我们可以控制纳米板的厚度,从而控制其光致发光发射。量子力学计算与实验值吻合得很好。我们发现,不仅钙钛矿的性质,而且有机配体的性质也起着重要的作用。纳米板的堆叠导致形成了能带,进一步改变了能带隙能量。此外,我们发现厚度小于三个单元的纳米板的激子结合能高达数百毫电子伏特,部分抵消了量子限制引起的蓝移。对钙钛矿纳米板中量子尺寸效应的理解以及对其进行调节的能力提供了另一种操纵金属有机卤化物钙钛矿光学性质的方法。