Suppr超能文献

胰高血糖素信号通路的中断以依赖SLC7A2和mTOR的方式增强胰岛非α细胞增殖。

Interruption of glucagon signaling augments islet non-alpha cell proliferation in SLC7A2- and mTOR-dependent manners.

作者信息

Coate Katie C, Dai Chunhua, Singh Ajay, Stanley Jade, Covington Brittney A, Bradley Amber, Oladipupo Favour, Gong Yulong, Wisniewski Scott, Spears Erick, Poffenberger Greg, Bustabad Alexandria, Rodgers Tyler, Dey Nandita, Shultz Leonard D, Greiner Dale L, Yan Hai, Powers Alvin C, Chen Wenbiao, Dean E Danielle

机构信息

Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN.

Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN.

出版信息

bioRxiv. 2024 Aug 7:2024.08.06.606926. doi: 10.1101/2024.08.06.606926.

Abstract

OBJECTIVE

Dysregulated glucagon secretion and inadequate functional beta cell mass are hallmark features of diabetes. While glucagon receptor (GCGR) antagonism ameliorates hyperglycemia and elicits beta cell regeneration in pre-clinical models of diabetes, it also promotes alpha and delta cell hyperplasia. We sought to investigate the mechanism by which loss of glucagon action impacts pancreatic islet non-alpha cells, and the relevance of these observations in a human islet context.

METHODS

We used zebrafish, rodents, and transplanted human islets comprising six different models of interrupted glucagon signaling to examine their impact on delta and beta cell proliferation and mass. We also used models with global deficiency of the cationic amino acid transporter, SLC7A2, and mTORC1 inhibition via rapamycin, to determine whether amino acid-dependent nutrient sensing was required for islet non-alpha cell growth.

RESULTS

Inhibition of glucagon signaling stimulated delta cell proliferation in mouse and transplanted human islets, and in mouse islets. This was rapamycin-sensitive and required SLC7A2. Likewise, deficiency augmented beta cell proliferation via SLC7A2- and mTORC1-dependent mechanisms in zebrafish and promoted cell cycle engagement in rodent beta cells but was insufficient to drive a significant increase in beta cell mass in mice.

CONCLUSION

Our findings demonstrate that interruption of glucagon signaling augments islet non-alpha cell proliferation in zebrafish, rodents, and transplanted human islets in a manner requiring SLC7A2 and mTORC1 activation. An increase in delta cell mass may be leveraged for future beta cell regeneration therapies relying upon delta cell reprogramming.

摘要

目的

胰高血糖素分泌失调和功能性β细胞量不足是糖尿病的标志性特征。虽然在糖尿病临床前模型中,胰高血糖素受体(GCGR)拮抗作用可改善高血糖并引发β细胞再生,但它也会促进α细胞和δ细胞增生。我们试图研究胰高血糖素作用丧失影响胰岛非α细胞的机制,以及这些观察结果在人类胰岛背景下的相关性。

方法

我们使用斑马鱼、啮齿动物以及包含六种不同胰高血糖素信号中断模型的移植人类胰岛,来研究它们对δ细胞和β细胞增殖及数量的影响。我们还使用了阳离子氨基酸转运体SLC7A2整体缺乏的模型,以及通过雷帕霉素抑制mTORC1,以确定胰岛非α细胞生长是否需要氨基酸依赖性营养感应。

结果

在小鼠和移植的人类胰岛以及小鼠胰岛中,抑制胰高血糖素信号可刺激δ细胞增殖。这对雷帕霉素敏感且需要SLC7A2。同样,在斑马鱼中,缺乏通过SLC7A2和mTORC1依赖性机制增强β细胞增殖,并促进啮齿动物β细胞的细胞周期参与,但不足以驱动小鼠β细胞量显著增加。

结论

我们的研究结果表明,胰高血糖素信号中断以需要SLC7A2和mTORC1激活的方式增强斑马鱼、啮齿动物和移植人类胰岛中的胰岛非α细胞增殖。δ细胞量的增加可用于未来依赖δ细胞重编程的β细胞再生疗法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验