Labastida-Polito Ariana, Garza-Ramos Georgina, Camarillo-Cadena Menandro, Zubillaga Rafael A, Hernández-Arana Andrés
Área de Biofisicoquímica, Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Iztapalapa, D.F. 09340, Mexico.
Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, D.F. 04510, Mexico.
BMC Biochem. 2015 Sep 3;16:20. doi: 10.1186/s12858-015-0049-2.
Saccharomyces cerevisiae triosephosphate isomerase (yTIM) is a dimeric protein that shows noncoincident unfolding and refolding transitions (hysteresis) in temperature scans, a phenomenon indicative of the slow forward and backward reactions of the native-unfolded process. Thermal unfolding scans suggest that no stable intermediates appear in the unfolding of yTIM. However, reported evidence points to the presence of residual structure in the denatured monomer at high temperature.
Thermally denatured yTIM showed a clear trend towards the formation of aggregation-prone, β-strand-like residual structure when pH decreased from 8.0 to 6.0, even though thermal unfolding profiles retained a simple monophasic appearance regardless of pH. However, kinetic studies performed over a relatively wide temperature range revealed a complex unfolding mechanism comprising up to three observable phases, with largely different time constants, each accompanied by changes in secondary structure. Besides, a simple sequential mechanism is unlikely to explain the observed variation of amplitudes and rate constants with temperature. This kinetic complexity is, however, not linked to the appearance of residual structure. Furthermore, the rate constant for the main unfolding phase shows small, rather unvarying values in the pH region where denatured yTIM gradually acquires a β-strand-like conformation. It appears, therefore, that the residual structure has no influence on the kinetic stability of the native protein. However, the presence of residual structure is clearly associated with increased irreversibility.
The slow temperature-induced unfolding of yeast TIM shows three kinetic phases. Rather than a simple sequential pathway, a complex mechanism involving off-pathway intermediates or even parallel pathways may be operating. β-strand-type residual structure, which appears below pH 8.0, is likely to be associated with increased irreversible aggregation of the unfolded protein. However, this denatured form apparently accelerates the refolding process.
酿酒酵母磷酸丙糖异构酶(yTIM)是一种二聚体蛋白,在温度扫描中呈现出不重合的解折叠和重折叠转变(滞后现象),这种现象表明天然-解折叠过程的正向和逆向反应缓慢。热解折叠扫描表明,yTIM的解折叠过程中没有出现稳定的中间体。然而,已报道的证据表明,高温下变性单体中存在残余结构。
当pH从8.0降至6.0时,热变性的yTIM呈现出易于聚集的β-链状残余结构形成的明显趋势,尽管热解折叠曲线无论pH如何都保持简单的单相外观。然而,在相对较宽的温度范围内进行的动力学研究揭示了一种复杂的解折叠机制,包括多达三个可观察到的阶段,每个阶段的时间常数有很大差异,且每个阶段都伴随着二级结构的变化。此外,简单的顺序机制不太可能解释观察到的振幅和速率常数随温度的变化。然而,这种动力学复杂性与残余结构的出现无关。此外,在变性yTIM逐渐获得β-链状构象的pH区域,主要解折叠阶段的速率常数显示出小而相当不变的值。因此,残余结构似乎对天然蛋白的动力学稳定性没有影响。然而,残余结构的存在显然与不可逆性增加有关。
酵母TIM缓慢的温度诱导解折叠呈现出三个动力学阶段。可能起作用的是一种复杂机制,涉及偏离途径的中间体甚至平行途径,而不是简单的顺序途径。在pH低于8.0时出现的β-链型残余结构可能与变性蛋白不可逆聚集增加有关。然而,这种变性形式显然加速了重折叠过程。