Suppr超能文献

呼吸与二氧化碳稳态的神经控制

Neural Control of Breathing and CO2 Homeostasis.

作者信息

Guyenet Patrice G, Bayliss Douglas A

机构信息

Department of Pharmacology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908-0735, USA.

Department of Pharmacology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908-0735, USA.

出版信息

Neuron. 2015 Sep 2;87(5):946-61. doi: 10.1016/j.neuron.2015.08.001.

Abstract

Recent advances have clarified how the brain detects CO2 to regulate breathing (central respiratory chemoreception). These mechanisms are reviewed and their significance is presented in the general context of CO2/pH homeostasis through breathing. At rest, respiratory chemoreflexes initiated at peripheral and central sites mediate rapid stabilization of arterial PCO2 and pH. Specific brainstem neurons (e.g., retrotrapezoid nucleus, RTN; serotonergic) are activated by PCO2 and stimulate breathing. RTN neurons detect CO2 via intrinsic proton receptors (TASK-2, GPR4), synaptic input from peripheral chemoreceptors and signals from astrocytes. Respiratory chemoreflexes are arousal state dependent whereas chemoreceptor stimulation produces arousal. When abnormal, these interactions lead to sleep-disordered breathing. During exercise, central command and reflexes from exercising muscles produce the breathing stimulation required to maintain arterial PCO2 and pH despite elevated metabolic activity. The neural circuits underlying central command and muscle afferent control of breathing remain elusive and represent a fertile area for future investigation.

摘要

近期的进展已阐明大脑如何检测二氧化碳以调节呼吸(中枢呼吸化学感受)。本文对这些机制进行了综述,并在通过呼吸实现二氧化碳/酸碱度稳态的总体背景下阐述了它们的重要性。在静息状态下,在外周和中枢部位启动的呼吸化学反射介导动脉血二氧化碳分压(PCO2)和酸碱度的快速稳定。特定的脑干神经元(如延髓头端腹外侧区,RTN;5-羟色胺能神经元)被PCO2激活并刺激呼吸。RTN神经元通过内在质子受体(TASK-2、GPR4)、外周化学感受器的突触输入以及星形胶质细胞的信号来检测二氧化碳。呼吸化学反射依赖于觉醒状态,而化学感受器刺激则会引起觉醒。当这些相互作用异常时,会导致睡眠呼吸紊乱。在运动过程中,中枢指令以及来自运动肌肉的反射产生维持动脉PCO2和酸碱度所需的呼吸刺激,尽管代谢活动增强。中枢指令和肌肉传入对呼吸控制的神经回路仍不清楚,是未来研究的一个丰富领域。

相似文献

1
Neural Control of Breathing and CO2 Homeostasis.
Neuron. 2015 Sep 2;87(5):946-61. doi: 10.1016/j.neuron.2015.08.001.
2
Neuromedin B-Expressing Neurons in the Retrotrapezoid Nucleus Regulate Respiratory Homeostasis and Promote Stable Breathing in Adult Mice.
J Neurosci. 2023 Jul 26;43(30):5501-5520. doi: 10.1523/JNEUROSCI.0386-23.2023. Epub 2023 Jun 8.
3
Bicarbonate directly modulates activity of chemosensitive neurons in the retrotrapezoid nucleus.
J Physiol. 2018 Sep;596(17):4033-4042. doi: 10.1113/JP276104. Epub 2018 Jul 5.
4
The Retrotrapezoid Nucleus: Central Chemoreceptor and Regulator of Breathing Automaticity.
Trends Neurosci. 2019 Nov;42(11):807-824. doi: 10.1016/j.tins.2019.09.002. Epub 2019 Oct 18.
5
Central respiratory chemoreception.
Handb Clin Neurol. 2022;188:37-72. doi: 10.1016/B978-0-323-91534-2.00007-2.
6
The 2008 Carl Ludwig Lecture: retrotrapezoid nucleus, CO2 homeostasis, and breathing automaticity.
J Appl Physiol (1985). 2008 Aug;105(2):404-16. doi: 10.1152/japplphysiol.90452.2008. Epub 2008 Jun 5.
7
Loss-of-function of chemoreceptor neurons in the retrotrapezoid nucleus: What have we learned from it?
Respir Physiol Neurobiol. 2024 Apr;322:104217. doi: 10.1016/j.resp.2024.104217. Epub 2024 Jan 17.
8
The respiratory chemoreception conundrum: light at the end of the tunnel?
Brain Res. 2013 May 20;1511:126-37. doi: 10.1016/j.brainres.2012.10.028. Epub 2012 Oct 23.
9
Adenosine Signaling through A1 Receptors Inhibits Chemosensitive Neurons in the Retrotrapezoid Nucleus.
eNeuro. 2018 Dec 14;5(6). doi: 10.1523/ENEURO.0404-18.2018. eCollection 2018 Nov-Dec.

引用本文的文献

2
Characterisation of putative retrotrapezoid nucleus (RTN) chemoreceptor neurons in the adult human brainstem.
Brain Struct Funct. 2025 Aug 11;230(7):131. doi: 10.1007/s00429-025-02991-9.
3
EEG oscillations and related brain generators of phonation phases in long utterances.
Sci Rep. 2025 Aug 9;15(1):29150. doi: 10.1038/s41598-025-13901-8.
4
Ion channels in respiratory rhythm generation and sensorimotor integration.
Neuron. 2025 Jul 21. doi: 10.1016/j.neuron.2025.06.011.
5
Respiratory and Metabolic Effects of Active Expiration in Freely Behaving Rats.
Acta Physiol (Oxf). 2025 Sep;241(9):e70084. doi: 10.1111/apha.70084.
8
Substantia nigra modulates breathing rate via locus coeruleus.
iScience. 2025 Apr 14;28(5):112423. doi: 10.1016/j.isci.2025.112423. eCollection 2025 May 16.
9
Lethal Interactions of neuronal networks in epilepsy mediated by both synaptic and volume transmission indicate approaches to prevention.
Prog Neurobiol. 2025 Jun;249:102770. doi: 10.1016/j.pneurobio.2025.102770. Epub 2025 Apr 19.

本文引用的文献

1
PHYSIOLOGY. Regulation of breathing by CO₂ requires the proton-activated receptor GPR4 in retrotrapezoid nucleus neurons.
Science. 2015 Jun 12;348(6240):1255-60. doi: 10.1126/science.aaa0922. Epub 2015 Jun 11.
2
Vagal Sensory Neuron Subtypes that Differentially Control Breathing.
Cell. 2015 Apr 23;161(3):622-633. doi: 10.1016/j.cell.2015.03.022. Epub 2015 Apr 16.
4
State-dependent control of breathing by the retrotrapezoid nucleus.
J Physiol. 2015 Jul 1;593(13):2909-26. doi: 10.1113/JP270053. Epub 2015 May 22.
5
Role of parafacial nuclei in control of breathing in adult rats.
J Neurosci. 2015 Jan 21;35(3):1052-67. doi: 10.1523/JNEUROSCI.2953-14.2015.
6
Hypoxia silences retrotrapezoid nucleus respiratory chemoreceptors via alkalosis.
J Neurosci. 2015 Jan 14;35(2):527-43. doi: 10.1523/JNEUROSCI.2923-14.2015.
7
Facing the challenge of mammalian neural microcircuits: taking a few breaths may help.
J Physiol. 2015 Jan 1;593(1):3-23. doi: 10.1113/jphysiol.2014.277632.
9
HCN channels contribute to serotonergic modulation of ventral surface chemosensitive neurons and respiratory activity.
J Neurophysiol. 2015 Feb 15;113(4):1195-205. doi: 10.1152/jn.00487.2014. Epub 2014 Nov 26.
10
Regulation of breathing and autonomic outflows by chemoreceptors.
Compr Physiol. 2014 Oct;4(4):1511-62. doi: 10.1002/cphy.c140004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验