Suppr超能文献

颞骨解剖结构的自动识别与三维重建

Automatic identification and 3D rendering of temporal bone anatomy.

作者信息

Noble Jack H, Dawant Benoit M, Warren Frank M, Labadie Robert F

机构信息

Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA.

出版信息

Otol Neurotol. 2009 Jun;30(4):436-42. doi: 10.1097/MAO.0b013e31819e61ed.

Abstract

HYPOTHESIS

Using automated methods, vital anatomy of the middle ear can be identified in computed tomographic (CT) scans and used to create 3-dimensional (3D) renderings.

BACKGROUND

Although difficult to master, clinicians compile 2D data from CT scans to envision 3D anatomy. Computer programs exist that can render 3D surfaces but are limited in that ear structures, for example, the facial nerve, can only be visualized after time-intensive manual identification for each scan. Here, we present results from novel computer algorithms that automatically identify temporal bone anatomy (external auditory canal, ossicles, labyrinth, facial nerve, and chorda tympani).

METHODS

An atlas of the labyrinth, ossicles, and auditory canal was created by manually identifying the structures in a "normal" temporal bone CT scan. Using well-accepted techniques, these structures were automatically identified in (n = 14) unknown CT images by deforming the atlas to match the unknown volumes. Another automatic localization algorithm was implemented to identify the position of the facial nerve and chorda tympani. Results were compared with manual identification by measuring false-positive and false-negative error.

RESULTS

The labyrinth, ossicles, and auditory canal were identified with mean errors less than 0.5 mm. The mean errors in facial nerve and chorda tympani identification were less than 0.3 mm.

CONCLUSION

Automated identification of temporal bone anatomy is achievable. The presented combination of techniques was successful in accurately identifying temporal bone anatomy. These results were obtained in less than 10 minutes per patient scan using standard computing equipment.

摘要

假设

使用自动化方法,可在计算机断层扫描(CT)中识别中耳的重要解剖结构,并用于创建三维(3D)渲染图。

背景

尽管难以掌握,但临床医生会从CT扫描中汇编二维数据以设想三维解剖结构。现有的计算机程序可以渲染三维表面,但存在局限性,例如耳部结构(如面神经),只有在对每次扫描进行耗时的手动识别后才能可视化。在此,我们展示了新型计算机算法的结果,该算法可自动识别颞骨解剖结构(外耳道、听小骨、迷路、面神经和鼓索)。

方法

通过手动识别“正常”颞骨CT扫描中的结构,创建了一个包含迷路、听小骨和耳道的图谱。使用公认的技术,通过使图谱变形以匹配未知体积,在(n = 14)张未知CT图像中自动识别这些结构。实施了另一种自动定位算法来识别面神经和鼓索的位置。通过测量假阳性和假阴性误差,将结果与手动识别进行比较。

结果

迷路、听小骨和耳道的识别平均误差小于0.5毫米。面神经和鼓索识别的平均误差小于0.3毫米。

结论

颞骨解剖结构的自动识别是可以实现的。所展示的技术组合成功地准确识别了颞骨解剖结构。使用标准计算设备,每位患者扫描的结果在不到10分钟内即可获得。

相似文献

1
Automatic identification and 3D rendering of temporal bone anatomy.
Otol Neurotol. 2009 Jun;30(4):436-42. doi: 10.1097/MAO.0b013e31819e61ed.
2
Tomographic anatomy of the ear.
Radiol Clin North Am. 1974 Dec;12(3):405-17.
3
Automatic segmentation of the facial nerve and chorda tympani in pediatric CT scans.
Med Phys. 2011 Oct;38(10):5590-600. doi: 10.1118/1.3634048.
4
Atlas-Based Segmentation of Temporal Bone Anatomy.
Int J Comput Assist Radiol Surg. 2017 Nov;12(11):1937-1944. doi: 10.1007/s11548-017-1658-6. Epub 2017 Aug 29.
5
Computed tomographic anatomy of the temporal bone.
AJR Am J Roentgenol. 1982 Oct;139(4):739-49. doi: 10.2214/ajr.139.4.739.
6
[Useful imaging of the ear].
J Radiol. 2006 Nov;87(11 Pt 2):1728-42. doi: 10.1016/s0221-0363(06)74155-5.
7
[Application of 3D U-net in automatic segmentation of middle ear surgery structures in temporal bone CT].
Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2020 Oct;34(10):870-873. doi: 10.13201/j.issn.2096-7993.2020.10.002.
8
[Quantitative positioning of facial nerve based on three-dimensional CT image reconstruction of temporal bone].
Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2007 Oct;21(19):865-8, 872.
9
Quantitative Assessment of Surgical Anatomy and Three-Dimensional Relationships in the Supralabyrinthine Space.
ORL J Otorhinolaryngol Relat Spec. 2016;78(5):259-267. doi: 10.1159/000448686. Epub 2016 Sep 10.
10
Automated Registration-Based Temporal Bone Computed Tomography Segmentation for Applications in Neurotologic Surgery.
Otolaryngol Head Neck Surg. 2022 Jul;167(1):133-140. doi: 10.1177/01945998211044982. Epub 2021 Sep 7.

引用本文的文献

2
Cochlear Implant Fold Detection in Intra-operative CT Using Weakly Supervised Multi-task Deep Learning.
Med Image Comput Comput Assist Interv. 2023 Oct;14228:249-259. doi: 10.1007/978-3-031-43996-4_24. Epub 2023 Oct 1.
3
Deep learning reconstruction improves the image quality of low-dose temporal bone CT with otitis media and mastoiditis patients.
Heliyon. 2023 Nov 23;10(1):e22810. doi: 10.1016/j.heliyon.2023.e22810. eCollection 2024 Jan 15.
4
Validation of active shape model techniques for intracochlear anatomy segmentation in computed tomography images.
J Med Imaging (Bellingham). 2023 Jul;10(4):044003. doi: 10.1117/1.JMI.10.4.044003. Epub 2023 Jul 19.
5
Deep learning-based approach for the automatic segmentation of adult and pediatric temporal bone computed tomography images.
Quant Imaging Med Surg. 2023 Mar 1;13(3):1577-1591. doi: 10.21037/qims-22-658. Epub 2023 Feb 10.
8
Fully automated segmentation in temporal bone CT with neural network: a preliminary assessment study.
BMC Med Imaging. 2021 Nov 9;21(1):166. doi: 10.1186/s12880-021-00698-x.
9
Magnetically Steered Robotic Insertion of Cochlear-Implant Electrode Arrays: System Integration and First-In-Cadaver Results.
IEEE Robot Autom Lett. 2020 Apr;5(2):2240-2247. doi: 10.1109/lra.2020.2970978. Epub 2020 Feb 3.
10
Clinical Translation of an Insertion Tool for Minimally Invasive Cochlear Implant Surgery.
J Med Device. 2021 Sep 1;15(3):031001. doi: 10.1115/1.4050203. Epub 2021 Apr 2.

本文引用的文献

1
Clinical validation of percutaneous cochlear implant surgery: initial report.
Laryngoscope. 2008 Jun;118(6):1031-9. doi: 10.1097/MLG.0b013e31816b309e.
2
Percutaneous cochlear access using bone-mounted, customized drill guides: demonstration of concept in vitro.
Otol Neurotol. 2007 Apr;28(3):325-9. doi: 10.1097/01.mao.0000253287.86737.2e.
3
A downloadable three-dimensional virtual model of the visible ear.
ORL J Otorhinolaryngol Relat Spec. 2007;69(2):63-7. doi: 10.1159/000097369. Epub 2006 Nov 23.
6
The adaptive bases algorithm for intensity-based nonrigid image registration.
IEEE Trans Med Imaging. 2003 Nov;22(11):1470-9. doi: 10.1109/TMI.2003.819299.
9
Computer-aided three-dimensional reconstruction and measurement of semicircular canals and their cristae in man.
Acta Otolaryngol. 1989 May-Jun;107(5-6):362-5. doi: 10.3109/00016488909127522.
10
Three-dimensional reconstruction of the temporal bone.
Laryngoscope. 1990 Jan;100(1):1-4. doi: 10.1288/00005537-199001000-00001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验