Suppr超能文献

一氧化氮作为对NaCl胁迫的早期和长距离信号响应,引发向日葵幼苗根和子叶中超氧化物歧化酶(FeSOD和Cu/ZnSOD)活性的浓度依赖性差异调节。

Nitric oxide triggers a concentration-dependent differential modulation of superoxide dismutase (FeSOD and Cu/ZnSOD) activity in sunflower seedling roots and cotyledons as an early and long distance signaling response to NaCl stress.

作者信息

Arora Dhara, Bhatla Satish C

机构信息

a Laboratory of Plant Physiology and Biochemistry; Department of Botany; University of Delhi ; Delhi , India.

出版信息

Plant Signal Behav. 2015;10(10):e1071753. doi: 10.1080/15592324.2015.1071753.

Abstract

Dark-grown sunflower (Helianthus annuus L.) seedlings exhibit modulation of total superoxide dismutase (SOD;EC 1.15.1.1) activity in roots and cotyledons (10,000g supernatant) in response to salt stress (NaCl; 120 mM) through a differential, zymographically detectable, whole tissue activity of FeSOD and Cu/ZnSOD. Confocal laser scanning microscopic imaging (CLSM) has further shown that NaCl stress significantly influences differential spatial distribution of Cu/ZnSOD and MnSOD isoforms in an inverse manner. Dual action of nitric oxide (NO) is evident in its crosstalk with FeSOD and Cu/ZnSOD in seedling roots and cotyledons in control and NaCl(-) stress conditions. Cu/ZnSOD activity in the roots of 2 d old NaCl(-) stressed seedlings is enhanced in the presence of 125-1000 µM of NO donor (sodium nitroprusside; SNP) indicating salt sensitivity of the enzyme activity. Quenching of endogenous NO by cPTIO treatment (500, 1000 µM) lowers FeSOD activity in roots (-NaCl). Cotyledons from control seedlings show an upregulation of FeSOD activity with increasing availability of SNP (125-1000 µM) in the Hoagland irrigation medium. Quenching of NO by cPTIO provides evidence for an inverse correlation between NO availability and FeSOD activity in seedling cotyledons irrespective of NaCl stress. Variable response due to NO on SOD isoforms in sunflower seedlings reflects its concentration-dependent biphasic (pro- and antioxidant) nature of action. Differential induction of SOD isoforms by NO indicates separate intracellular signaling pathways (associated with their respective functional separation) operative in seedling roots as an early salt stress mechanism and in cotyledons as an early long-distance NaCl stress sensing mechanism.

摘要

黑暗中生长的向日葵(Helianthus annuus L.)幼苗的根和子叶(10,000g 上清液)中的总超氧化物歧化酶(SOD;EC 1.15.1.1)活性会响应盐胁迫(120 mM NaCl)而发生调节,通过一种可经酶谱检测的、全组织中 FeSOD 和 Cu/ZnSOD 的差异活性来实现。共聚焦激光扫描显微镜成像(CLSM)进一步表明,NaCl 胁迫以相反方式显著影响 Cu/ZnSOD 和 MnSOD 同工型的差异空间分布。在对照和 NaCl(-)胁迫条件下,一氧化氮(NO)在幼苗根和子叶中与 FeSOD 和 Cu/ZnSOD 的相互作用中表现出双重作用。在 125 - 1000 μM 的 NO 供体(硝普钠;SNP)存在下,2 天龄 NaCl(-)胁迫幼苗根中的 Cu/ZnSOD 活性增强,表明该酶活性对盐敏感。用 cPTIO 处理(500、1000 μM)淬灭内源性 NO 会降低根(-NaCl)中的 FeSOD 活性。对照幼苗的子叶显示,随着 Hoagland 灌溉培养基中 SNP 可用性增加(125 - 1000 μM),FeSOD 活性上调。cPTIO 淬灭 NO 为幼苗子叶中 NO 可用性与 FeSOD 活性之间的负相关提供了证据,而与 NaCl 胁迫无关。NO 对向日葵幼苗 SOD 同工型的可变响应反映了其浓度依赖性的双相(促氧化和抗氧化)作用性质。NO 对 SOD 同工型的差异诱导表明,在幼苗根中作为早期盐胁迫机制以及在子叶中作为早期长距离 NaCl 胁迫感知机制,存在单独的细胞内信号通路(与其各自的功能分离相关)在起作用。

相似文献

3
Melatonin and nitric oxide regulate sunflower seedling growth under salt stress accompanying differential expression of Cu/Zn SOD and Mn SOD.
Free Radic Biol Med. 2017 May;106:315-328. doi: 10.1016/j.freeradbiomed.2017.02.042. Epub 2017 Feb 28.
5
Nitric oxide modulates polyamine homeostasis in sunflower seedling cotyledons under salt stress.
Plant Signal Behav. 2019;14(11):1667730. doi: 10.1080/15592324.2019.1667730. Epub 2019 Sep 17.

引用本文的文献

1
Functional interaction of melatonin with gasotransmitters and ROS in plant adaptation to abiotic stresses.
Front Plant Sci. 2024 Dec 12;15:1505874. doi: 10.3389/fpls.2024.1505874. eCollection 2024.
2
Features of the Effect of Quercetin on Different Genotypes of Wheat under Hypoxia.
Int J Mol Sci. 2024 Apr 19;25(8):4487. doi: 10.3390/ijms25084487.
3
The role of nitric oxide and hydrogen sulfide in regulation of redox homeostasis at extreme temperatures in plants.
Front Plant Sci. 2023 Feb 7;14:1128439. doi: 10.3389/fpls.2023.1128439. eCollection 2023.
6
Biochemical mechanisms regulating salt tolerance in sunflower.
Plant Signal Behav. 2019;14(12):1670597. doi: 10.1080/15592324.2019.1670597. Epub 2019 Sep 30.
8
How exogenous nitric oxide regulates nitrogen assimilation in wheat seedlings under different nitrogen sources and levels.
PLoS One. 2018 Jan 10;13(1):e0190269. doi: 10.1371/journal.pone.0190269. eCollection 2018.

本文引用的文献

2
Differential inhibition of Arabidopsis superoxide dismutases by peroxynitrite-mediated tyrosine nitration.
J Exp Bot. 2015 Feb;66(3):989-99. doi: 10.1093/jxb/eru458. Epub 2014 Nov 26.
3
Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization.
Int J Genomics. 2014;2014:701596. doi: 10.1155/2014/701596. Epub 2014 Apr 3.
6
ROS homeostasis in halophytes in the context of salinity stress tolerance.
J Exp Bot. 2014 Mar;65(5):1241-57. doi: 10.1093/jxb/ert430. Epub 2013 Dec 24.
7
RuBisCO depletion improved proteome coverage of cold responsive S-nitrosylated targets in Brassica juncea.
Front Plant Sci. 2013 Sep 2;4:342. doi: 10.3389/fpls.2013.00342. eCollection 2013.
8
Nitric oxide-dependent posttranslational modification in plants: an update.
Int J Mol Sci. 2012 Nov 16;13(11):15193-208. doi: 10.3390/ijms131115193.
9
Analysis of superoxide dismutase activity.
Curr Protoc Toxicol. 2001 May;Chapter 7:Unit7.3. doi: 10.1002/0471140856.tx0703s00.
10
Peroxynitrite formation and function in plants.
Plant Sci. 2011 Nov;181(5):534-9. doi: 10.1016/j.plantsci.2011.05.002. Epub 2011 May 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验