Mikaelyan Aram, Dietrich Carsten, Köhler Tim, Poulsen Michael, Sillam-Dussès David, Brune Andreas
Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany.
LOEWE Center for Synthetic Microbiology, SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany.
Mol Ecol. 2015 Oct;24(20):5284-95. doi: 10.1111/mec.13376. Epub 2015 Oct 12.
The gut microbiota of termites plays critical roles in the symbiotic digestion of lignocellulose. While phylogenetically 'lower termites' are characterized by a unique association with cellulolytic flagellates, higher termites (family Termitidae) harbour exclusively prokaryotic communities in their dilated hindguts. Unlike the more primitive termite families, which primarily feed on wood, they have adapted to a variety of lignocellulosic food sources in different stages of humification, ranging from sound wood to soil organic matter. In this study, we comparatively analysed representatives of different taxonomic lineages and feeding groups of higher termites to identify the major drivers of bacterial community structure in the termite gut, using amplicon libraries of 16S rRNA genes from 18 species of higher termites. In all analyses, the wood-feeding species were clearly separated from humus and soil feeders, irrespective of their taxonomic affiliation, offering compelling evidence that diet is the primary determinant of bacterial community structure. Within each diet group, however, gut communities of termites from the same subfamily were more similar than those of distantly related species. A highly resolved classification using a curated reference database revealed only few genus-level taxa whose distribution patterns indicated specificity for certain host lineages, limiting any possible cospeciation between the gut microbiota and host to short evolutionary timescales. Rather, the observed patterns in the host-specific distribution of the bacterial lineages in termite guts are best explained by diet-related differences in the availability of microhabitats and functional niches.
白蚁的肠道微生物群在木质纤维素的共生消化中起着关键作用。虽然从系统发育角度来看,“低等白蚁”的特征是与纤维素分解鞭毛虫有着独特的共生关系,但高等白蚁(白蚁科)在其扩张的后肠中仅含有原核生物群落。与主要以木材为食的更为原始的白蚁科不同,它们已经适应了不同腐殖化阶段的各种木质纤维素食物来源,从完好的木材到土壤有机质。在本研究中,我们使用来自18种高等白蚁的16S rRNA基因扩增子文库,对高等白蚁不同分类谱系和取食群体的代表进行了比较分析,以确定白蚁肠道细菌群落结构的主要驱动因素。在所有分析中,取食木材的物种与腐殖质和土壤取食者明显分开,无论它们的分类归属如何,这提供了令人信服的证据,表明饮食是细菌群落结构的主要决定因素。然而,在每个饮食组中,来自同一亚科的白蚁肠道群落比亲缘关系较远的物种的肠道群落更为相似。使用经过整理的参考数据库进行的高度解析分类显示,只有少数属级分类单元的分布模式表明对某些宿主谱系具有特异性,将肠道微生物群与宿主之间任何可能的共物种化限制在较短的进化时间尺度内。相反,白蚁肠道中细菌谱系在宿主特异性分布中观察到的模式,最好用与饮食相关的微生境和功能生态位可用性差异来解释。