Pio-Lopez Léo, Levin Michael
Allen Discovery Center, Tufts University, Medford, USA.
Wyss Institute for Biologically Inspired Engineering, Boston, 02115, USA.
BMC Bioinformatics. 2025 Jun 2;26(1):149. doi: 10.1186/s12859-025-06158-5.
The volume and complexity of biological data have significantly increased in recent years, often represented as network models continue to increase at a rapid pace. However, drug discovery in the context of complex phenotypes are hampered by the difficulties inherent in producing machine learning algorithms that can integrate molecular-genetic, biochemical, physiological, and other diverse datasets. Recent developments have expanded network analysis techniques, such as network embedding, to effectively explore multilayer network structures. Multilayer networks, which incorporate various nodes and connections in formats such as multiplex, heterogeneous, and bipartite networks, provide an effective framework for merging diverse and multi-scale biological data sources. However, current network embedding methods face challenges and limitations in addressing the heterogeneity and diversity of these networks. Therefore, there is an essential need for the development of new network embedding methods to manage the complexity and diversity of multi-omics biological information effectively.
Here, we report a universal multilayer network embedding method MultiXVERSE, which is to the best of our knowledge the first one capable of handling any kind of multilayer network. We applied it to a molecular-drug-disease multiplex-heterogeneous network. Our model made new predictions about a link between GABA and cancer that we verified experimentally in the Xenopus laevis model.
The development of MultiXVERSE represents a significant advancement in the integration and analysis of multilayer networks for biological research. By providing a universal, scalable framework for multilayer network embedding, MultiXVERSE enables the systematic exploration of molecular and phenotypic interactions across diverse biological contexts. Our experimental validation of the predicted link between GABA and cancer using Xenopus laevis underscores its capability to generate biologically meaningful hypotheses and accelerate breakthroughs in multi-omics research. Future directions include applying MultiXVERSE to additional multi-omics datasets and integrating it with high-throughput experimental pipelines for systematic hypothesis generation and validation, particularly in drug discovery. Beyond its biological applications, MultiXVERSE is a versatile tool that can be utilized for analyzing multilayer networks in a wide range of fields, including social sciences and other complex systems. By offering a universal framework, MultiXVERSE paves the way for novel insights and interdisciplinary collaborations in multilayer network research.
近年来,生物数据的数量和复杂性显著增加,通常表现为网络模型继续快速增长。然而,在复杂表型背景下的药物发现受到生产能够整合分子遗传学、生化、生理和其他多样数据集的机器学习算法所固有的困难的阻碍。最近的进展扩展了网络分析技术,如网络嵌入,以有效地探索多层网络结构。多层网络以多重、异构和二分网络等形式包含各种节点和连接,为合并多样和多尺度生物数据源提供了一个有效的框架。然而,当前的网络嵌入方法在处理这些网络的异质性和多样性方面面临挑战和限制。因此,迫切需要开发新的网络嵌入方法,以有效管理多组学生物信息的复杂性和多样性。
在此,我们报告了一种通用的多层网络嵌入方法MultiXVERSE,据我们所知,这是第一种能够处理任何类型多层网络的方法。我们将其应用于一个分子 - 药物 - 疾病多重 - 异构网络。我们的模型对γ-氨基丁酸(GABA)与癌症之间的联系做出了新的预测,并在非洲爪蟾模型中进行了实验验证。
MultiXVERSE的开发代表了生物研究中多层网络整合与分析的重大进展。通过为多层网络嵌入提供一个通用、可扩展的框架,MultiXVERSE能够系统地探索不同生物背景下的分子和表型相互作用。我们使用非洲爪蟾对GABA与癌症之间预测联系的实验验证强调了其生成生物学上有意义的假设并加速多组学研究突破的能力。未来的方向包括将MultiXVERSE应用于更多的多组学数据集,并将其与高通量实验流程整合,以进行系统的假设生成和验证,特别是在药物发现方面。除了其生物学应用外,MultiXVERSE是一种通用工具,可用于分析包括社会科学和其他复杂系统在内的广泛领域中的多层网络。通过提供一个通用框架,MultiXVERSE为多层网络研究中的新见解和跨学科合作铺平了道路。