Suppr超能文献

丙型肝炎病毒感染的空间分布及相关决定因素——地理加权泊松回归在热点地区循证筛查干预中的应用

The Spatial Distribution of Hepatitis C Virus Infections and Associated Determinants--An Application of a Geographically Weighted Poisson Regression for Evidence-Based Screening Interventions in Hotspots.

作者信息

Kauhl Boris, Heil Jeanne, Hoebe Christian J P A, Schweikart Jürgen, Krafft Thomas, Dukers-Muijrers Nicole H T M

机构信息

Department of Health, Ethics and Society, School of Public Health and Primary Care (CAPHRI), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands.

Department of Sexual Health, Infectious Diseases and Environmental Health, South Limburg Public Health Service (GGD Zuid Limburg), Geleen, The Netherlands.

出版信息

PLoS One. 2015 Sep 9;10(9):e0135656. doi: 10.1371/journal.pone.0135656. eCollection 2015.

Abstract

BACKGROUND

Hepatitis C Virus (HCV) infections are a major cause for liver diseases. A large proportion of these infections remain hidden to care due to its mostly asymptomatic nature. Population-based screening and screening targeted on behavioural risk groups had not proven to be effective in revealing these hidden infections. Therefore, more practically applicable approaches to target screenings are necessary. Geographic Information Systems (GIS) and spatial epidemiological methods may provide a more feasible basis for screening interventions through the identification of hotspots as well as demographic and socio-economic determinants.

METHODS

Analysed data included all HCV tests (n = 23,800) performed in the southern area of the Netherlands between 2002-2008. HCV positivity was defined as a positive immunoblot or polymerase chain reaction test. Population data were matched to the geocoded HCV test data. The spatial scan statistic was applied to detect areas with elevated HCV risk. We applied global regression models to determine associations between population-based determinants and HCV risk. Geographically weighted Poisson regression models were then constructed to determine local differences of the association between HCV risk and population-based determinants.

RESULTS

HCV prevalence varied geographically and clustered in urban areas. The main population at risk were middle-aged males, non-western immigrants and divorced persons. Socio-economic determinants consisted of one-person households, persons with low income and mean property value. However, the association between HCV risk and demographic as well as socio-economic determinants displayed strong regional and intra-urban differences.

DISCUSSION

The detection of local hotspots in our study may serve as a basis for prioritization of areas for future targeted interventions. Demographic and socio-economic determinants associated with HCV risk show regional differences underlining that a one-size-fits-all approach even within small geographic areas may not be appropriate. Future screening interventions need to consider the spatially varying association between HCV risk and associated demographic and socio-economic determinants.

摘要

背景

丙型肝炎病毒(HCV)感染是肝脏疾病的主要病因。由于其大多无症状的特性,很大一部分此类感染仍未被医疗系统发现。基于人群的筛查以及针对行为风险群体的筛查尚未证明在发现这些隐匿感染方面有效。因此,需要更切实可行的目标筛查方法。地理信息系统(GIS)和空间流行病学方法或许能通过识别热点区域以及人口和社会经济决定因素,为筛查干预提供更可行的基础。

方法

分析的数据包括2002年至2008年在荷兰南部地区进行的所有HCV检测(n = 23,800)。HCV阳性定义为免疫印迹或聚合酶链反应检测呈阳性。人口数据与地理编码的HCV检测数据相匹配。应用空间扫描统计量来检测HCV风险升高的区域。我们应用全局回归模型来确定基于人群的决定因素与HCV风险之间的关联。然后构建地理加权泊松回归模型来确定HCV风险与基于人群的决定因素之间关联的局部差异。

结果

HCV患病率在地理上存在差异且在城市地区聚集。主要风险人群为中年男性、非西方移民和离婚者。社会经济决定因素包括单人家庭、低收入者和平均财产价值。然而,HCV风险与人口以及社会经济决定因素之间的关联显示出强烈的区域和城市内部差异。

讨论

我们研究中对局部热点区域的检测可为未来目标干预区域的优先排序提供依据。与HCV风险相关的人口和社会经济决定因素存在区域差异,这表明即使在小地理区域内采用一刀切的方法也可能不合适。未来的筛查干预需要考虑HCV风险与相关人口和社会经济决定因素之间空间变化的关联。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5c9/4564162/1d0b0e570123/pone.0135656.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验