Glover Natasha M, Daron Josquin, Pingault Lise, Vandepoele Klaas, Paux Etienne, Feuillet Catherine, Choulet Frédéric
INRA UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, 63039, Clermont-Ferrand, France.
University Blaise Pascal UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, 63039, Clermont-Ferrand, France.
Genome Biol. 2015 Sep 9;16(1):188. doi: 10.1186/s13059-015-0754-6.
Bread wheat is not only an important crop, but its large (17 Gb), highly repetitive, and hexaploid genome makes it a good model to study the organization and evolution of complex genomes. Recently, we produced a high quality reference sequence of wheat chromosome 3B (774 Mb), which provides an excellent opportunity to study the evolutionary dynamics of a large and polyploid genome, specifically the impact of single gene duplications.
We find that 27 % of the 3B predicted genes are non-syntenic with the orthologous chromosomes of Brachypodium distachyon, Oryza sativa, and Sorghum bicolor, whereas, by applying the same criteria, non-syntenic genes represent on average only 10 % of the predicted genes in these three model grasses. These non-syntenic genes on 3B have high sequence similarity to at least one other gene in the wheat genome, indicating that hexaploid wheat has undergone massive small-scale interchromosomal gene duplications compared to other grasses. Insertions of non-syntenic genes occurred at a similar rate along the chromosome, but these genes tend to be retained at a higher frequency in the distal, recombinogenic regions. The ratio of non-synonymous to synonymous substitution rates showed a more relaxed selection pressure for non-syntenic genes compared to syntenic genes, and gene ontology analysis indicated that non-syntenic genes may be enriched in functions involved in disease resistance.
Our results highlight the major impact of single gene duplications on the wheat gene complement and confirm the accelerated evolution of the Triticeae lineage among grasses.
普通小麦不仅是一种重要的作物,而且其庞大(17 Gb)、高度重复的六倍体基因组使其成为研究复杂基因组组织和进化的良好模型。最近,我们生成了高质量的小麦3B染色体(774 Mb)参考序列,这为研究大型多倍体基因组的进化动态,特别是单基因重复的影响提供了绝佳机会。
我们发现,3B染色体上预测的基因中有27%与二穗短柄草、水稻和高粱的直系同源染色体不同源,而按照相同标准,在这三种模式禾本科植物中,不同源基因平均仅占预测基因的10%。3B染色体上的这些不同源基因与小麦基因组中的至少一个其他基因具有高度序列相似性,这表明与其他禾本科植物相比,六倍体小麦经历了大规模的小规模染色体间基因重复。不同源基因的插入在染色体上的发生率相似,但这些基因在远端重组区域的保留频率往往更高。非同义替换率与同义替换率的比值表明,与同源基因相比,不同源基因的选择压力更为宽松,基因本体分析表明,不同源基因可能在抗病相关功能中富集。
我们的结果突出了单基因重复对小麦基因组成的主要影响,并证实了小麦族在禾本科植物中加速进化。