Suppr超能文献

系统医学:系统生物学方法在现代医学研究与药物开发中的应用

Systems Medicine: The Application of Systems Biology Approaches for Modern Medical Research and Drug Development.

作者信息

Ayers Duncan, Day Philip J

机构信息

Centre for Molecular Medicine and Biobanking, University of Malta, Msida MSD 2080, Malta ; Faculty of Medical & Human Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.

Faculty of Medical & Human Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.

出版信息

Mol Biol Int. 2015;2015:698169. doi: 10.1155/2015/698169. Epub 2015 Aug 18.

Abstract

The exponential development of highly advanced scientific and medical research technologies throughout the past 30 years has arrived to the point where the high number of characterized molecular agents related to pathogenesis cannot be readily integrated or processed by conventional analytical approaches. Indeed, the realization that several moieties are signatures of disease has partly led to the increment of complex diseases being characterized. Scientists and clinicians can now investigate and analyse any individual dysregulations occurring within the genomic, transcriptomic, miRnomic, proteomic, and metabolomic levels thanks to currently available advanced technologies. However, there are drawbacks within this scientific brave new age in that only isolated molecular levels are individually investigated for their influence in affecting any particular health condition. Since their conception in 1992, systems biology/medicine focuses mainly on the perturbations of overall pathway kinetics for the consequent onset and/or deterioration of the investigated condition/s. Systems medicine approaches can therefore be employed for shedding light in multiple research scenarios, ultimately leading to the practical result of uncovering novel dynamic interaction networks that are critical for influencing the course of medical conditions. Consequently, systems medicine also serves to identify clinically important molecular targets for diagnostic and therapeutic measures against such a condition.

摘要

在过去30年里,高度先进的科学和医学研究技术呈指数级发展,已达到这样一个程度:大量与发病机制相关的已表征分子因子无法通过传统分析方法轻易整合或处理。事实上,认识到多个部分是疾病的特征,在一定程度上导致了复杂疾病被表征的数量增加。借助当前可用的先进技术,科学家和临床医生现在可以研究和分析在基因组、转录组、微小RNA组、蛋白质组和代谢组水平上发生的任何个体失调情况。然而,在这个科学的全新时代存在一些缺点,即仅单独研究孤立的分子水平对任何特定健康状况的影响。自1992年提出以来,系统生物学/医学主要关注整体通路动力学的扰动对所研究状况的随后发生和/或恶化的影响。因此,系统医学方法可用于在多种研究场景中提供启示,最终导致揭示对影响疾病进程至关重要的新型动态相互作用网络这一实际成果。因此,系统医学还有助于识别针对此类疾病状况的诊断和治疗措施的临床重要分子靶点。

引用本文的文献

1
Interdisciplinary Research in Iran VII: The Convergence of Biology and Artificial Intelligence.
J Med Signals Sens. 2025 Sep 1;15:25. doi: 10.4103/jmss.jmss_68_24. eCollection 2025.
2
Roadmap for a Systems Biology Initiative in Iran.
J Med Signals Sens. 2025 Sep 1;15:26. doi: 10.4103/jmss.jmss_66_24. eCollection 2025.
3
Basic and Clinical Scientists Working Together-Do We Make the Best of Both Worlds?
Calcif Tissue Int. 2025 Feb 14;116(1):39. doi: 10.1007/s00223-025-01347-z.
6
Lactation physiokinetics-using advances in technology for a fresh perspective on human milk transfer.
Front Pediatr. 2023 Oct 16;11:1264286. doi: 10.3389/fped.2023.1264286. eCollection 2023.
7
DeeP4med: deep learning for P4 medicine to predict normal and cancer transcriptome in multiple human tissues.
BMC Bioinformatics. 2023 Jul 4;24(1):275. doi: 10.1186/s12859-023-05400-2.
8
PROTEOMAS: a workflow enabling harmonized proteomic meta-analysis and proteomic signature mapping.
J Cheminform. 2023 Mar 19;15(1):34. doi: 10.1186/s13321-023-00710-2.
9
Perspectives of (/memorandum for) systems thinking on COVID-19 pandemic and pathology.
J Eval Clin Pract. 2023 Apr;29(3):415-429. doi: 10.1111/jep.13772. Epub 2022 Sep 28.

本文引用的文献

1
Delineating cancer evolution with single-cell sequencing.
Sci Transl Med. 2015 Jul 15;7(296):296fs29. doi: 10.1126/scitranslmed.aac8319.
2
SEEK: a systems biology data and model management platform.
BMC Syst Biol. 2015 Jul 11;9:33. doi: 10.1186/s12918-015-0174-y.
3
Content-based image retrieval in radiology: analysis of variability in human perception of similarity.
J Med Imaging (Bellingham). 2015 Apr;2(2):025501. doi: 10.1117/1.JMI.2.2.025501. Epub 2015 Apr 3.
4
Development of cell differentiation in the transition to multicellularity: a dynamical modeling approach.
Front Microbiol. 2015 Jun 23;6:603. doi: 10.3389/fmicb.2015.00603. eCollection 2015.
5
MONALISA for stochastic simulations of Petri net models of biochemical systems.
BMC Bioinformatics. 2015 Jul 10;16:215. doi: 10.1186/s12859-015-0596-y.
6
Bottom-up modeling approach for the quantitative estimation of parameters in pathogen-host interactions.
Front Microbiol. 2015 Jun 19;6:608. doi: 10.3389/fmicb.2015.00608. eCollection 2015.
7
Data2Dynamics: a modeling environment tailored to parameter estimation in dynamical systems.
Bioinformatics. 2015 Nov 1;31(21):3558-60. doi: 10.1093/bioinformatics/btv405. Epub 2015 Jul 3.
8
Computational Biology Methods for Characterization of Pluripotent Cells.
Methods Mol Biol. 2016;1357:195-220. doi: 10.1007/7651_2015_279.
10
Hyperscape: visualization for complex biological networks.
Bioinformatics. 2015 Oct 15;31(20):3390-1. doi: 10.1093/bioinformatics/btv385. Epub 2015 Jun 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验