Suppr超能文献

细菌分裂体:准备好特写镜头了。

The bacterial divisome: ready for its close-up.

作者信息

Rowlett Veronica W, Margolin William

机构信息

Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin, Houston, TX 77030, USA.

Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin, Houston, TX 77030, USA

出版信息

Philos Trans R Soc Lond B Biol Sci. 2015 Oct 5;370(1679). doi: 10.1098/rstb.2015.0028.

Abstract

Bacterial cells divide by targeting a transmembrane protein machine to the division site and regulating its assembly and disassembly so that cytokinesis occurs at the correct time in the cell cycle. The structure and dynamics of this machine (divisome) in bacterial model systems are coming more clearly into focus, thanks to incisive cell biology methods in combination with biochemical and genetic approaches. The main conserved structural element of the machine is the tubulin homologue FtsZ, which assembles into a circumferential ring at the division site that is stabilized and anchored to the inner surface of the cytoplasmic membrane by FtsZ-binding proteins. Once this ring is in place, it recruits a series of transmembrane proteins that ultimately trigger cytokinesis. This review will survey the methods used to characterize the structure of the bacterial divisome, focusing mainly on the Escherichia coli model system, as well as the challenges that remain. These methods include recent super-resolution microscopy, cryo-electron tomography and synthetic reconstitution.

摘要

细菌细胞通过将一种跨膜蛋白机器定位到分裂位点并调节其组装和拆卸来进行分裂,从而使胞质分裂在细胞周期的正确时间发生。由于精确的细胞生物学方法与生化和遗传学方法相结合,这种机器(分裂体)在细菌模型系统中的结构和动态越来越清晰地成为研究焦点。该机器的主要保守结构元件是微管蛋白同源物FtsZ,它在分裂位点组装成一个圆周环,通过FtsZ结合蛋白稳定并锚定在细胞质膜的内表面。一旦这个环形成,它就会招募一系列跨膜蛋白,最终触发胞质分裂。本综述将概述用于表征细菌分裂体结构的方法,主要聚焦于大肠杆菌模型系统,以及仍然存在的挑战。这些方法包括最近的超分辨率显微镜、冷冻电子断层扫描和合成重组。

相似文献

1
The bacterial divisome: ready for its close-up.
Philos Trans R Soc Lond B Biol Sci. 2015 Oct 5;370(1679). doi: 10.1098/rstb.2015.0028.
2
Splitsville: structural and functional insights into the dynamic bacterial Z ring.
Nat Rev Microbiol. 2016 Apr;14(5):305-19. doi: 10.1038/nrmicro.2016.26. Epub 2016 Apr 4.
3
Building the Bacterial Divisome at the Septum.
Subcell Biochem. 2024;104:49-71. doi: 10.1007/978-3-031-58843-3_4.
4
FtsEX acts on FtsA to regulate divisome assembly and activity.
Proc Natl Acad Sci U S A. 2016 Aug 23;113(34):E5052-61. doi: 10.1073/pnas.1606656113. Epub 2016 Aug 8.
5
Assembly and architecture of Escherichia coli divisome proteins FtsA and FtsZ.
J Biol Chem. 2022 Mar;298(3):101663. doi: 10.1016/j.jbc.2022.101663. Epub 2022 Jan 29.
6
Insights into the assembly and regulation of the bacterial divisome.
Nat Rev Microbiol. 2024 Jan;22(1):33-45. doi: 10.1038/s41579-023-00942-x. Epub 2023 Jul 31.
7
The divisome is a self-enhancing machine in Escherichia coli and Caulobacter crescentus.
Nat Commun. 2024 Sep 18;15(1):8198. doi: 10.1038/s41467-024-52217-5.
9
FtsZ dynamics in bacterial division: What, how, and why?
Curr Opin Cell Biol. 2021 Feb;68:163-172. doi: 10.1016/j.ceb.2020.10.013. Epub 2020 Nov 18.

引用本文的文献

1
pH-dependent genotypic and phenotypic variability in G20.
Appl Environ Microbiol. 2025 Apr 23;91(4):e0256524. doi: 10.1128/aem.02565-24. Epub 2025 Mar 26.
2
Leveraging Engineered Minicells for Bioconversion of Organic Acids into Short-Chain Methyl Ketones.
ACS Synth Biol. 2025 Jan 17;14(1):257-272. doi: 10.1021/acssynbio.4c00700. Epub 2025 Jan 3.
3
Plasticity in the cell division processes of obligate intracellular bacteria.
Front Cell Infect Microbiol. 2023 Oct 9;13:1205488. doi: 10.3389/fcimb.2023.1205488. eCollection 2023.
4
The structural integrity of the membrane-embedded bacterial division complex FtsQBL studied with molecular dynamics simulations.
Comput Struct Biotechnol J. 2023 Apr 3;21:2602-2612. doi: 10.1016/j.csbj.2023.03.052. eCollection 2023.
5
Plasma Membrane-Cell Wall Feedback in Bacteria.
J Bacteriol. 2023 Mar 21;205(3):e0043322. doi: 10.1128/jb.00433-22. Epub 2023 Feb 16.
7
Identification of a Novel Regulator of Clostridioides difficile Cortex Formation.
mSphere. 2021 Jun 30;6(3):e0021121. doi: 10.1128/mSphere.00211-21. Epub 2021 May 28.
9
Bacterial Vivisection: How Fluorescence-Based Imaging Techniques Shed a Light on the Inner Workings of Bacteria.
Microbiol Mol Biol Rev. 2020 Oct 28;84(4). doi: 10.1128/MMBR.00008-20. Print 2020 Nov 18.

本文引用的文献

1
A multi-layered protein network stabilizes the Escherichia coli FtsZ-ring and modulates constriction dynamics.
PLoS Genet. 2015 Apr 7;11(4):e1005128. doi: 10.1371/journal.pgen.1005128. eCollection 2015 Apr.
3
Visualization of the type III secretion sorting platform of Shigella flexneri.
Proc Natl Acad Sci U S A. 2015 Jan 27;112(4):1047-52. doi: 10.1073/pnas.1411610112. Epub 2015 Jan 12.
5
MapZ marks the division sites and positions FtsZ rings in Streptococcus pneumoniae.
Nature. 2014 Dec 11;516(7530):259-262. doi: 10.1038/nature13966. Epub 2014 Nov 26.
6
3D-SIM super-resolution of FtsZ and its membrane tethers in Escherichia coli cells.
Biophys J. 2014 Oct 21;107(8):L17-L20. doi: 10.1016/j.bpj.2014.08.024.
10
Correlated cryogenic photoactivated localization microscopy and cryo-electron tomography.
Nat Methods. 2014 Jul;11(7):737-9. doi: 10.1038/nmeth.2961. Epub 2014 May 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验