Suppr超能文献

mRNA的有丝分裂遗传促进成骨细胞谱系定向因子Runx2在成骨细胞后代中的翻译激活。

Mitotic Inheritance of mRNA Facilitates Translational Activation of the Osteogenic-Lineage Commitment Factor Runx2 in Progeny of Osteoblastic Cells.

作者信息

Varela Nelson, Aranguiz Alejandra, Lizama Carlos, Sepulveda Hugo, Antonelli Marcelo, Thaler Roman, Moreno Ricardo D, Montecino Martin, Stein Gary S, van Wijnen Andre J, Galindo Mario

机构信息

Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile.

Department of Medical Technology, Faculty of Medicine, University of Chile, Santiago, Chile.

出版信息

J Cell Physiol. 2016 May;231(5):1001-14. doi: 10.1002/jcp.25188. Epub 2015 Sep 18.

Abstract

Epigenetic mechanisms mediate the acquisition of specialized cellular phenotypes during tissue development, maintenance and repair. When phenotype-committed cells transit through mitosis, chromosomal condensation counteracts epigenetic activation of gene expression. Subsequent post-mitotic re-activation of transcription depends on epigenetic DNA and histone modifications, as well as other architecturally bound proteins that "bookmark" the genome. Osteogenic lineage commitment, differentiation and progenitor proliferation require the bone-related runt-related transcription factor Runx2. Here, we characterized a non-genomic mRNA mediated mechanism by which osteoblast precursors retain their phenotype during self-renewal. We show that osteoblasts produce maximal levels of Runx2 mRNA, but not protein, prior to mitotic cell division. Runx2 mRNA partitions symmetrically between daughter cells in a non-chromosomal tubulin-containing compartment. Subsequently, transcription-independent de novo synthesis of Runx2 protein in early G1 phase results in increased functional interactions of Runx2 with a representative osteoblast-specific target gene (osteocalcin/BGLAP2) in chromatin. Somatic transmission of Runx2 mRNAs in osteoblasts and osteosarcoma cells represents a versatile mechanism for translational rather than transcriptional induction of this principal gene regulator to maintain osteoblast phenotype identity after mitosis.

摘要

表观遗传机制在组织发育、维持和修复过程中介导特定细胞表型的获得。当已确定表型的细胞经历有丝分裂时,染色体凝缩会抵消基因表达的表观遗传激活。随后有丝分裂后的转录重新激活取决于表观遗传的DNA和组蛋白修饰,以及其他“标记”基因组的结构结合蛋白。成骨谱系的定向分化、分化和祖细胞增殖需要与骨相关的 runt 相关转录因子Runx2。在这里,我们描述了一种非基因组mRNA介导的机制,通过该机制成骨细胞前体在自我更新过程中保持其表型。我们发现,成骨细胞在有丝分裂细胞分裂之前产生最大水平的Runx2 mRNA,但不产生蛋白质。Runx2 mRNA在含有微管蛋白的非染色体区室中对称地分配到子细胞中。随后,在G1早期阶段,Runx2蛋白的转录非依赖性从头合成导致Runx2与染色质中代表性的成骨细胞特异性靶基因(骨钙素/BGLAP2)的功能相互作用增加。成骨细胞和骨肉瘤细胞中Runx2 mRNA的体细胞传递代表了一种通用机制,通过这种机制,该主要基因调节因子通过翻译而非转录诱导来维持有丝分裂后成骨细胞表型的同一性。

相似文献

4
BMP2 commitment to the osteogenic lineage involves activation of Runx2 by DLX3 and a homeodomain transcriptional network.
J Biol Chem. 2006 Dec 29;281(52):40515-26. doi: 10.1074/jbc.M604508200. Epub 2006 Oct 23.
9
Foxo1 mediates insulin-like growth factor 1 (IGF1)/insulin regulation of osteocalcin expression by antagonizing Runx2 in osteoblasts.
J Biol Chem. 2011 May 27;286(21):19149-58. doi: 10.1074/jbc.M110.197905. Epub 2011 Apr 6.
10
Nrf2 negatively regulates osteoblast differentiation via interfering with Runx2-dependent transcriptional activation.
J Biol Chem. 2006 Jun 30;281(26):18015-24. doi: 10.1074/jbc.M600603200. Epub 2006 Apr 12.

引用本文的文献

1
Sensory Nerve Regulation via H3K27 Demethylation Revealed in Akermanite Composite Microspheres Repairing Maxillofacial Bone Defect.
Adv Sci (Weinh). 2024 Aug;11(30):e2400242. doi: 10.1002/advs.202400242. Epub 2024 Jun 14.
2
Runx2 overexpression promotes bone repair of osteonecrosis of the femoral head (ONFH).
Mol Biol Rep. 2023 Jun;50(6):4769-4779. doi: 10.1007/s11033-023-08411-7. Epub 2023 Apr 7.
5
Long-term imaging of individual mRNA molecules in living cells.
Cell Rep Methods. 2022 May 25;2(6):100226. doi: 10.1016/j.crmeth.2022.100226. eCollection 2022 Jun 20.
6
Combination of BMP2 and EZH2 Inhibition to Stimulate Osteogenesis in a 3D Bone Reconstruction Model.
Tissue Eng Part A. 2021 Aug;27(15-16):1084-1098. doi: 10.1089/ten.TEA.2020.0218. Epub 2021 Jan 12.
8
Extracellular vesicles from osteosarcoma cell lines contain miRNAs associated with cell adhesion and apoptosis.
Gene. 2019 Aug 20;710:246-257. doi: 10.1016/j.gene.2019.06.005. Epub 2019 Jun 6.
10
Enhancer of zeste homolog 2 () controls bone formation and cell cycle progression during osteogenesis in mice.
J Biol Chem. 2018 Aug 17;293(33):12894-12907. doi: 10.1074/jbc.RA118.002983. Epub 2018 Jun 13.

本文引用的文献

1
Maternal-zygotic knockout reveals a critical role of Cdx2 in the morula to blastocyst transition.
Dev Biol. 2015 Feb 15;398(2):147-52. doi: 10.1016/j.ydbio.2014.12.004. Epub 2014 Dec 13.
2
Control of asymmetric cell division.
Curr Opin Cell Biol. 2014 Dec;31:84-91. doi: 10.1016/j.ceb.2014.09.005. Epub 2014 Sep 28.
4
Vitamin D and gene networks in human osteoblasts.
Front Physiol. 2014 Apr 9;5:137. doi: 10.3389/fphys.2014.00137. eCollection 2014.
5
Overview of skeletal development.
Methods Mol Biol. 2014;1130:3-12. doi: 10.1007/978-1-62703-989-5_1.
6
Bookmarking target genes in mitosis: a shared epigenetic trait of phenotypic transcription factors and oncogenes?
Cancer Res. 2014 Jan 15;74(2):420-5. doi: 10.1158/0008-5472.CAN-13-2837. Epub 2014 Jan 9.
7
Regulation of postnatal bone homeostasis by TGFβ.
Bonekey Rep. 2013 Jan 9;2:255. doi: 10.1038/bonekey.2012.255.
9
Wnt signalling in osteoporosis: mechanisms and novel therapeutic approaches.
Nat Rev Endocrinol. 2013 Oct;9(10):575-83. doi: 10.1038/nrendo.2013.154. Epub 2013 Aug 13.
10
Cell-cell signaling: broadening our view of the basic multicellular unit.
Calcif Tissue Int. 2014 Jan;94(1):2-3. doi: 10.1007/s00223-013-9766-y. Epub 2013 Jul 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验