Suppr超能文献

自推进纳米马达自主寻找并修复裂缝。

Self-Propelled Nanomotors Autonomously Seek and Repair Cracks.

机构信息

Department of Nanoengineering, University of California San Diego , La Jolla, California 92093, United States.

Department of Chemical Engineering, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States.

出版信息

Nano Lett. 2015 Oct 14;15(10):7077-85. doi: 10.1021/acs.nanolett.5b03140. Epub 2015 Sep 21.

Abstract

Biological self-healing involves the autonomous localization of healing agents at the site of damage. Herein, we design and characterize a synthetic repair system where self-propelled nanomotors autonomously seek and localize at microscopic cracks and thus mimic salient features of biological wound healing. We demonstrate that these chemically powered catalytic nanomotors, composed of conductive Au/Pt spherical Janus particles, can autonomously detect and repair microscopic mechanical defects to restore the electrical conductivity of broken electronic pathways. This repair mechanism capitalizes on energetic wells and obstacles formed by surface cracks, which dramatically alter the nanomotor dynamics and trigger their localization at the defects. By developing models for self-propelled Janus nanomotors on a cracked surface, we simulate the systems' dynamics over a range of particle speeds and densities to verify the process by which the nanomotors autonomously localize and accumulate at the cracks. We take advantage of this localization to demonstrate that the nanomotors can form conductive "patches" to repair scratched electrodes and restore the conductive pathway. Such a nanomotor-based repair system represents an important step toward the realization of biomimetic nanosystems that can autonomously sense and respond to environmental changes, a development that potentially can be expanded to a wide range of applications, from self-healing electronics to targeted drug delivery.

摘要

生物自我修复涉及到愈合剂在损伤部位的自主定位。在这里,我们设计并描述了一个合成修复系统,其中自推进纳米马达自主寻找并定位在微观裂缝处,从而模拟了生物伤口愈合的显著特征。我们证明,由导电 Au/Pt 球形 Janus 颗粒组成的这些化学动力催化纳米马达可以自主检测和修复微观机械缺陷,从而恢复断裂电子路径的导电性。这种修复机制利用了表面裂缝形成的能量阱和障碍物,这些因素极大地改变了纳米马达的动力学,并促使它们在缺陷处定位。通过在有裂缝的表面上为自推进的 Janus 纳米马达开发模型,我们模拟了系统在一系列颗粒速度和密度下的动力学,以验证纳米马达自主定位和在裂缝处聚集的过程。我们利用这种定位来证明纳米马达可以形成导电“补丁”来修复划伤的电极并恢复导电路径。这种基于纳米马达的修复系统代表了向实现能够自主感知和响应环境变化的仿生纳米系统迈出的重要一步,这一发展可能会扩展到广泛的应用领域,从自我修复的电子产品到靶向药物输送。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验